Gadde, K. M., Parker, C. B., Maner, L. G., Wagner, H. R.,
Logue, E. J., Drezner, M. K. & Krishnan, K. R. R.
2001. Bupropion for weight loss: an investigation of
efficacy and tolerability in overweight and obese
women. Obesity Research, 9, 544-551.
Garsed, K., Chernova, J., Hastings, M., Lam, C., Marciani,
L., Singh, G., Henry, A., Hall, I., Whorwell, P. &
Spiller, R. 2014. A randomised trial of ondansetron for
the treatment of irritable bowel syndrome with
diarrhoea. Gut, 63, 1617-1625.
Gottlieb, A., Stein, G. Y., Ruppin, E. & Sharan, R. 2011.
PREDICT: a method for inferring novel drug
indications with application to personalized medicine.
Molecular Systems Biology, 7, 496.
Greenway, F. L., Fujioka, K., Plodkowski, R. A.,
Mudaliar, S., Guttadauria, M., Erickson, J., Kim, D.
D., Dunayevich, E. & Group, C.-I. S. 2010. Effect of
naltrexone plus bupropion on weight loss in
overweight and obese adults (COR-I): a multicentre,
randomised, double-blind, placebo-controlled, phase 3
trial. The Lancet, 376, 595-605.
Hall, M., Frank, E., Holmes, G., Pfahringer, B.,
Reutemann, P. & Witten, I. H. 2009. The WEKA data
mining software: an update. ACM SIGKDD
explorations newsletter, 11, 10-18.
He, H. & Garcia, E. A. 2009. Learning from imbalanced
data. IEEE Transactions on Knowledge and Data
Engineering, 21, 1263-1284.
Hu, G. & Agarwal, P. 2009. Human disease-drug network
based on genomic expression profiles. PLoS ONE, 4,
e6536.
Igel, L. I., Sinha, A., Saunders, K. H., Apovian, C. M.,
Vojta, D. & Aronne, L. J. 2016. Metformin: an old
therapy that deserves a new indication for the
treatment of obesity. Current Atherosclerosis Reports,
18, 1-8.
Jain, A. K., Kaplan, R. A., Gadde, K. M., Wadden, T. A.,
Allison, D. B., Brewer, E. R., Leadbetter, R. A.,
Richard, N., Haight, B. & Jamerson, B. D. 2002.
Bupropion SR vs. placebo for weight loss in obese
patients with depressive symptoms. Obesity Research,
10, 1049-1056.
Jensen, P. B., Jensen, L. J. & Brunak, S. 2012. Mining
electronic health records: towards better research
applications and clinical care. Nature Reviews
Genetics, 13, 395-405.
Keiser, M. J., Setola, V., Irwin, J. J., Laggner, C., Abbas,
A., Hufeisen, S. J., Jensen, N. H., Kuijer, M. B.,
Matos, R. C., Tran, T. B., Whaley, R., Glennon, R. A.,
Hert, J., Thomas, K. L. H., Edwards, D. D., Shoichet,
B. K. & Roth, B. L. 2009. Predicting new molecular
targets for known drugs. Nature, 462, 175-181.
Khatri, P., Roedder, S., Kimura, N., De Vusser, K.,
Morgan, A. A., Gong, Y., Fischbein, M. P., Robbins,
R. C., Naesens, M., Butte, A. J. & Sarwal, M. M.
2013. A common rejection module (CRM) for acute
rejection across multiple organs identifies novel
therapeutics for organ transplantation. The Journal of
Experimental Medicine, 210, 2205-2221.
Knezevic, M. Z., Bivolarevic, I. C., Peric, T. S. &
Jankovic, S. M. 2011. Using Facebook to increase
spontaneous reporting of adverse drug reactions. Drug
Safety, 34, 351-352.
Kotsiantis, S., Kanellopoulos, D. & Pintelas, P. 2006.
Handling imbalanced datasets: A review. GESTS
International Transactions on Computer Science and
Engineering, 30, 25-36.
Leaman, R., Doğan, R. I. & Lu, Z. 2013. DNorm: disease
name normalization with pairwise learning to rank.
Bioinformatics, 29, 2909-2917.
Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R.,
Bethard, S. & Mcclosky, D. The Stanford CoreNLP
natural language processing toolkit. In: The 52nd
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, 2014 Baltimore,
MD, USA. 55-60.
Mcdonagh, M. S., Selph, S., Ozpinar, A. & Foley, C.
2014. Systematic review of the benefits and risks of
metformin in treating obesity in children aged 18 years
and younger. JAMA Pediatrics, 168, 178-184.
Michalski, R. S., Carbonell, J. G. & Mitchell, T. M. 2013.
Machine learning: An artificial intelligence approach,
Springer Science & Business Media.
Paolisso, G., Amato, L., Eccellente, R., Gambardella, A.,
Tagliamonte, M. R., Varricchio, G., Carella, C.,
Giugliano, D. & D'onofrio, F. 1998. Effect of
metformin on food intake in obese subjects. European
Journal of Clinical Investigation, 28, 441-446.
Pedersen, T., Pakhomov, S. V. S., Patwardhan, S. &
Chute, C. G. 2007. Measures of semantic similarity
and relatedness in the biomedical domain. Journal of
Biomedical Informatics, 40, 288-299.
Peirson, L., Douketis, J., Ciliska, D., Fitzpatrick-Lewis,
D., Ali, M. U. & Raina, P. 2014. Treatment for
overweight and obesity in adult populations: a
systematic review and meta-analysis. CMAJ Open, 2,
E306-E317.
Pleyer, L. & Greil, R. 2015. Digging deep into “dirty”
drugs–modulation of the methylation machinery.
Drug
Metabolism Reviews, 47, 252-279.
Powell, G. E., Seifert, H. A., Reblin, T., Burstein, P. J.,
Blowers, J., Menius, J. A., Painter, J. L., Thomas, M.,
Pierce, C. E., Rodriguez, H. W., Brownstein, J. S.,
Freifeld, C. C., Bell, H. G. & Dasgupta, N. 2016.
Social media listening for routine post-marketing
safety surveillance. Drug Safety, 39, 443-454.
Quinlan, J. R. 2014. C4.5: programs for machine learning,
Elsevier.
Ru, B., Harris, K. & Yao, L. A Content Analysis of
Patient-Reported Medication Outcomes on Social
Media. In: Proceedings of IEEE 15th International
Conference on Data Mining Workshops, 2015 Atlantic
City, NJ, USA. IEEE, 472-479.
Sánchez, D., Batet, M., Isern, D. & Valls, A. 2012.
Ontology-based semantic similarity: A new feature-
based approach. Expert Systems with Applications, 39,
7718-7728.
Sanseau, P., Agarwal, P., Barnes, M. R., Pastinen, T.,
Richards, J. B., Cardon, L. R. & Mooser, V. 2012. Use