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Abstract: Dimensionality reduction (DR) is an important issue in classification and pattern recognition process. Using 
features with lower dimensionality helps the machine learning algorithms work more efficient. Besides, it 
also can improve the performance of the system. This paper explores supervised dimensionality reduction, 
LDA (Linear Discriminant Analysis), NCA (Neighbourhood Components Analysis), and MCML (Maximally 
Collapsing Metric Learning), in emotion recognition based on ECG signals from the Mahnob-HCI database. 
It is a 3-class problem of valence and arousal. Features for kNN (k-nearest neighbour) are based on statistical 
distribution of dominant frequencies after applying a bivariate empirical mode decomposition. The results 
were validated using 10-fold cross and LOSO (leave-one-subject-out) validations. Among LDA, NCA, and 
MCML, the NCA outperformed the other methods. The experiments showed that the accuracy for valence 
was improved from 55.8% to 64.1%, and for arousal from 59.7% to 66.1% using 10-fold cross validation after 
transforming the features with projection matrices from NCA. For LOSO validation, there is no significant 
improvement for valence while the improvement for arousal is significant, i.e. from 58.7% to 69.6%. 

1 INTRODUCTION 

Decreasing the dimensionality of features without 
losing their important characteristic is a vital pre-
processing phase in high-dimensional data analysis 
(Sugiyama, 2007). Dimensionality reduction (DR) is 
an important tool to handle the curse of 
dimensionality. Projecting high dimensional feature 
space to lower dimensional feature space helps 
classifiers perform better. As human vision system is 
limited to 3D, visualization of feature space gets 
benefits from DR. Moreover, DR is also useful in data 
compression (Lee and Verleysen, 2010), for example 
when it is important to store all training data as in k-
nearest neighbour classifier (kNN). 

Dimensionality reduction (DR) methods include 
linear and nonlinear techniques. Well known method 
for linear DR is principal component analysis (PCA) 
(Jolliffe, 2002). The nonlinear DR emerged later, e.g. 
Sammon’s mapping (Sammon, 1969). Furthermore, 
there are supervised and unsupervised DR techniques. 
The supervised DRs use labels of the data to guide the 
mapping process while the unsupervised ones rely on 

finding a projection space which provides the highest 
variance. 

This paper explores a number of supervised DR 
techniques, i.e. Neighbourhood Components 
Analysis (NCA), Linear Discriminant Analysis 
(LDA), Maximally Collapsing Metric Learning 
(MCML), and applied them to enhance the accuracy 
of emotion recognition-based ECG signal from the 
Mahnob-HCI database for affect recognition. 

The Mahnob-HCI database was published in 2012 
with some baseline accuracies (Soleymani, et al., 
2012) for 3-class classification problem of valence 
and arousal. However, a baseline for emotion 
recognition based on ECG signals only were not 
given therein. Ferdinando et al. (Ferdinando, et al., 
2014) computed Heart Rate Variability (HRV) 
indexes achieving baseline accuracies, 42.6% and 
47.7% for valence and arousal respectively. Later, 
Ferdinando et al. improved the accuracy to 55.8% and 
59.7% for valence and arousal respectively by 
applying bivariate empirical mode decomposition 
(BEMD) to ECG signals and use the statistical 
distributions of dominant frequency as the features 
(Ferdinando, et al., 2016).  
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Although significant improvements have been 
achieved in (Ferdinando, et al., 2016), the best 
accuracies, so far, from this database were 76% and 
68% for valence and arousal respectively (Soleymani, 
et al., 2012) using features from eye gaze and EEG. 
We aim at improving the classification accuracy by 
using only ECG signals. 

In this paper, we enhance the accuracy of emotion 
recognition by applying supervised DR to the features 
based on applying BEMD analysis to ECG signals 
(Ferdinando, et al., 2016) prior feeding them to the 
kNN classifier. Projection matrix calculations were 
done with the Matlab code by van der Maaten (van 
der Maaten, 2016). 

2 SUPERVISED 
DIMENSIONALITY 
REDUCTION 

Supervised DRs in drtoolbox are Linear Discriminant 
Analysis (LDA), Generalized Discriminant Analysis 
(GDA), Neighbourhood Components Analysis 
(NCA), Maximally Collapsing Metric Learning 
(MCML), and Large Margin Nearest Neighbor 
(LMNN) (van der Maaten, 2016). They work based 
on the label/class of the inputs. The labels serve as a 
guideline to reduce the dimensionality. The 
supervised DR methods in this exploration are based 
on a Mahalonobis distance measure  
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within kNN framework, except LDA and GDA, 
where WWA T  is a positive semidefinite (PSD) 
matrix, and W is the projection matrix to a certain 
space. The ultimate goal is to find projection matrix 
A, such that the classifiers perform well in the 
transformed space. Unfortunately, the GDA does not 
provide a projection matrix A such that new features 
can be transformed into other space but user can 
choose the target dimensionality (van der Maaten, 
2016). For this reason, GDA was not included in our 
study. Looking to the implementation of LMNN, 
there is no such dimensionality reduction but it 
provides a projection matrix A (van der Maaten, 
2016). Due to this fact, the LMNN was also discarded 
from the experiments. 

 

 

2.1 Linear Discriminant Analysis 
(LDA) 

Linear Discriminant Analysis (LDA) (Weinberger 
and Saul, 2009) computes linear projection 
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that maximizes the amount of between-class variance 
(Cb) relative to the amount of within-class variance 
(Cw). The objective function is defined as 
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The LDA DR works well when the reduced 
dimensionality is less than the number of classes. In 
addition, the conditional densities of the classes must 
be multivariate Gaussian. Failing to fulfil this 
requirement makes the transformed features not 
suitable for kNN. This method has been applied to 
spoken emotion recognition problem (Zhang and 
Zhao, 2013), EEG-based emotion recognition 
(Valenzi, et al., 2014), and ECG-based individual 
identification (Fratini, et al., 2015). 

2.2 Neighbourhood Components 
Analysis (NCA) 

Neighbourhood Component Analysis (NCA) 
(Goldberger, et al., 2005) is non-parametric which 
makes no assumption about the shape of the class 
distribution or the boundaries between them. The 
algorithm directly maximizes a stochastic variant of 
the leave-one-out kNN score on the training set. The 
final goal is to find a transformation matrix such that 
in the transformed space, the kNN performs well. The 
size of the transformation matrix determines the 
dimension of the transformed features. Using this 
method, one can visualize high dimensional features 
in 2D or 3D space. 

To deal with the discontinuity of the leave-one-
out classification error of kNN, a differentiable cost 
function based on stochastic (“soft”) neighbour 
assignment in the transformed space was introduced 
(Goldberger, et al., 2005). The idea is to use softmax 
function, to transform distance from point i to j into 
probability pij and inherit its class label from the 
selected point.  
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with objective function defined as 
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The algorithm searches for the transformation matrix 
A, such that the objective function is maximized. The 
algorithm uses a gradient rule, by differentiating f(A) 
with respect to the transformation matrix A, for 
learning. The NCA was able to separate data 
containing useful information and noise, which ended 
up with dimensionality reduction (Goldberger, et al., 
2005). 

The NCA has been applied to research in 
Affective Computing, e.g. Zhang and Zhao applied it 
to the spontaneous Chinese and the acted Berlin 
database for spoken emotion recognition and then 
compared it with other dimensionality reduction 
methods (Zhang and Zhao, 2013). McDuff et al. used 
the NCA in AffectAura project (McDuff, et al., 
2012). Romero et al. put on the NCA to reduce 
dimensionality of features from EEG (Romero, et al., 
2015).  

2.3 Maximally Collapsing Metric 
Learning (MCML) 

Maximally Collapsing Metric Learning  (MCML) 
(Globerson and Roweis, 2006) uses simple geometric 
intuition that all points belonging to the same class 
are mapped (collapsed) to a single location in feature 
space and all points from the other classes are mapped 
to other locations. The main goal is to find a 
transformation matrix A such that it fulfills the simple 
geometric intuition idea. To learn the distance 
measure, each training point is assigned to a 
conditional probability,   A

ij
A pijp | , over other 

points using softmax function. From conditional 
probability point of view, the probability of a point 
belonging to class X given that point is in class X is 
1, otherwise it is zero. Given pairs of input and label
 ii yx , , the conditional probability is defined as 
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The algorithm searches for a matrix A such that 
A
ijp  is as close as possible to *

ijp  by minimizing 

objective function f(A), i.e. Kullback-Leibler 
divergence between them, such that PSDA . The 
objective function (Globerson and Roweis, 2006) is 
defined as 
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The MCML has been applied to spoken emotion 
recognition (Zhang and Zhao, 2013) and EEG-based 
Iyashi expression analysis (Romero, et al., 2015). 

3 MATERIAL AND METHODS 

3.1 ECG Signal Processing 

The Mahnob-HCI database contains 32-channel 
EEG, peripheral physiological signals (ECG, 
temperature, respiration, skin conductance), face and 
body video, speech, and eye gaze recording from 27 
subjects (11 males and 16 females). All signals were 
precisely synchronized which is suitable for 
multimodal emotional response studies. The ECG 
signals were sampled at 256 Hz (Soleymani, et al., 
2012). 

We used the same data as in (Ferdinando, et al., 
2014), i.e. “Selection of Emotion Elicitation” in the 
database. The original data contains 513 samples. 
However, the sample from session 2508 was 
discarded because visual inspection showed it is 
corrupted. Thus, we worked with 512 samples, 
subject to several filters to suppress noise from power 
line interference, baseline drift, motion artifact, 
electrode contact, and muscle contraction 
(Soleymani, et al., 2012). 

The ECG signals contain data from both 
unstimulated and stimulated phase. Since we were 
only interested in ECG during stimulated phase, this 
part must be separated from the other utilizing 
synchronization signal provided by the database. 

The BEMD method (Rilling, et al., 2007) was 
used to get features from ECG. Based on our 
experiments, the BEMD method was sensitive to the 
length of the signal. For this reason, the ECG signal 
was divided into 5 second segments. A synthetic ECG 
signal, synchronized with the R-wave event to the 
original signal, was generated by using the model 
from McSharry et al. (McSharry, et al., 2003). This 
signal served as the imaginary part of the ECG signal 
while the original served as the real part. This 
complex-valued ECG signal was analyzed by the 
BEMD method, resulting in 5-6 intrinsic mode 
functions (IMFs). The first three IMFs, as suggested 
by Agrafioti et al. (Agrafioti, et al., 2012), were 
analyzed for dominant frequencies using spectrogram 
analysis (Ferdinando, et al., 2016). The spectrogram 
analysis relies on two parameters, i.e. window size 
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and overlap. The dominant frequencies of all 5 second 
segments are collected and various features are 
calculated as follows. The features are based on the 
statistical distribution of the dominant frequencies 
and their first difference: mean, standard deviation, 
median, Q1, Q3, IQR, skewness, kurtosis, percentile 
2.5, percentile 10, percentile 90, percentile 97.5, 
maximum, and minimum. The results are groups in 
three sets: feature1 (statistical distribution of the 
dominant frequencies; 84 features), feature2 
(statistical distribution of the dominant frequencies’ 
first difference; 84 features), and feature12 (combine 
both feature1 and feature2; 168 features). The best 
features are then selected from each group with 
sequential forward-floating search. The number of 
most selected features varies from two to twenty-
three, depending on whether valence or arousal is 
recognized and the parameters used in the 
spectrogram analysis (Ferdinando, et al., 2016).  

3.2 Dimensionality Reduction 

The chosen DR methods, LDA, NCA, and MCML, 
are applied to the selected features from certain 
window size and overlap parameters combination in 
the spectrogram analysis found in (Ferdinando, et al., 
2016) to get features with lower dimensionality. The 
initial matrix A for NCA and MCML are generated 
with a random number generator. It means that there 
is no guarantee that they provide the optimum matrix 
A in one pass. The algorithm is modified to be 
iterative such that it stops – a flag is set – when there 
is no improvement, validated using leave-one-out 
cross-validation, within 200 iterations. The DR is 
applied only in cases when the number of selected 
features is greater than the target dimensionality. The 
optimum projection matrix A is saved for further 
process. 

3.3 Classifier and Validation Methods 

We used kNN classifier as in (Ferdinando, et al., 
2016) to solve the original 3-class classification 
problem for valence and arousal. 20% of the data are 
held out for validation while the rest are subject to 10-
fold cross validation. The classifier model is built 
based on the projection of the selected features using 
the optimum projection matrix A during the DR 
phase. The whole validation process is repeated 100 
times with new resampling in each iteration. The 
average over the repetition represent the final 
accuracy. When the accuracies from different 
combinations of window size and overlap parameter 

are close to each other, the final accuracy is justified 
using the Law of Large Numbers (LLN). 

Another validation for the result is leave-one-
subject-out (LOSO) validation. The main idea is to 
evaluate if the transformed features are general 
enough to work well with features from new subjects.  

4 RESULTS 

Table 1 to 4 show the best results from each target 
dimensionality of each DR algorithm with 10-fold 
cross validation and 100 iterations. 

Table 1: Accuracy after applying LDA DR for valence and 
arousal. 

Dimensionality Valence Arousal 
2D 55.1 ± 7.4 59.9 ± 6.8 

Since this is 3-class problem, the highest 
dimensionality that the LDA can yield is two. 
Surprisingly, the accuracy for both valence and 
arousal are close to (Ferdinando, et al., 2016). An 
improvement, however, is less storage and faster 
calculation than standard kNN. 

Table 2: Accuracy after applying NCA DR for valence and 
arousal. 

Dimensionality Valence Arousal 
2D 61.3 ± 7.2 65.6 ± 6.2 
3D 57.0 ± 8.0 66.0 ± 8.1 
4D 65.3 ± 6.5 60.1 ± 7.7 
5D 64.5 ± 6.7 61.0 ± 8.1 
6D 53.2 ± 7.6 61.5 ± 7.5 
7D 60.4 ± 6.6 61.2 ± 7.2 

Results from the NCA for both valence and 
arousal are promising, since the best accuracies for 
valence and arousal are even higher than in 
(Ferdinando, et al., 2016).  

Table 3: Accuracy after applying MCML DR for valence 
and arousal. 

Dimensionality Valence Arousal 
2D 54.5 ± 7.9 60.5 ± 7.5 
3D 54.6 ± 7.4 48.9 ± 7.3 
4D 41.8 ± 6.9 49.3 ± 7.2 
5D 41.9 ± 7.2 49.3 ± 7.1 
6D 42.1 ± 7.6 49.2 ± 7.0 
7D 43.5 ± 7.3 48.4 ± 8.9 

The best results based on the MCML DR from 
both valence and arousal are close to the ones in 
(Ferdinando, et al., 2016). It also results in less 
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storage for the data and faster computation than 
standard kNN. 

Table 4 compares the results among LDA, NCA, 
and MCML side-by-side. It shows that the NCA 
outperforms the other methods. The difference is 
roughly 10% and 5% for valence and arousal, 
respectively. 

Table 4: Best accuracies of the dimensionality reduction 
methods. 

 LDA NCA MCML 
Valence 55.1 ± 7.4 65.3 ± 6.5 

(4D) 
64.5 ± 6.7 
(5D) 

54.6 ± 7.4 
(3D) 
54.5 ± 7.9 
(2D)

Arousal 59.9 ± 6.8 66.0 ± 8.1 
(3D) 
65.6 ± 6.2 
(2D) 

60.5 ± 7.5 
(2D) 

Since the most promising results in some cells in 
Table 4 are close to each other, the Law of Large 
Numbers is used to estimate accuracies as close as 
possible to the true ones. After 1000 iterations, the 
best results are in Table 5. 

Table 5: Applying LLN based on Table 4. 

 LDA NCA MCML 
Valence 54.2 ± 7.4 64.1 ± 7.4 

(4D) 
53.6 ± 7.3 
(3D) 

Arousal 59.8 ± 7.3 66.1 ± 7.4 
(3D) 

59.5 ± 7.1 
(2D) 

 
It is obvious that the NCA method outperforms 

the others. The rest of the experiments are related to 
LOSO validation. Table 6 to 8 summarizes these 
experiments for valence and arousal. 

Table 6: Accuracy after applying LDA DR for valence and 
arousal in LOSO validation. 

Dimensionality Valence Arousal 
2D 56.5 ± 10.7 60.6 ± 9.1 

The accuracies for both valence and arousal based 
on LOSO validation reveal the same pattern as in 10-
fold cross validation (see Table 1), i.e. accuracy for 
arousal is higher than that for valence. These 
accuracies are also close to ones in Table 1. For 
valence, the result came from the same window size 
and overlap parameters in the spectrogram analysis, 
but not for arousal.  

By comparing Table 2 and Table 7, one can 
observe that the best result from arousal came from 
the same dimensionality. Looking into detail of the 
experiments, one finds out that the best result also 

came using the same window size and overlap 
parameters in the spectrogram analysis. However, the 
valence did not show this pattern.  

Table 7: Accuracy after applying NCA DR for valence and 
arousal in LOSO validation. 

Dimensionality Valence Arousal 
2D 61.7 ± 14.1 69.6 ± 12.4 
3D 59.4 ± 11.6 51.1 ± 9.5 
4D 44.0 ± 12.0 53.3 ± 11.0 
5D 40.1 ± 12.0 47.3 ± 11.9 
6D 40.0 ± 13.0 51.5 ± 8.6 
7D 38.7 ± 11.1 45.7 ± 12.3 

Table 8: Accuracy after applying MCML DR for valence 
and arousal in LOSO validation. 

Dimensionality Valence Arousal 
2D 55.9 ± 9.3 61.7 ± 12.3 
3D 56.3 ± 12.1 50.2 ± 9.8 
4D 41.9 ± 10.6 50.2 ± 10.0 
5D 38.8 ± 10.6 50.5 ± 10.4 
6D 39.3 ± 11.0 50.3 ± 10.5 
7D 39.1 ± 10.8 48.4 ± 8.9 

Similar to the NCA result, the accuracy for 
arousal also came from the same dimensionality and 
parameters of the spectrogram analysis, but not for 
valence. 

Table 9: Accuracies of all dimensionality reduction 
methods in LOSO validation. 

 LDA NCA MCML 
Valence 56.5 ± 10.7 61.7 ± 14.1 56.3 ± 12.1 
Arousal 60.6 ± 9.1 69.6 ± 12.4 61.7 ± 12.3 

Significance assessment was performed using t-
test with significance level 0.05 for valence between 
LDA and NCA methods. The p-value was 0.035 
indicating that NCA was superior to LDA. For 
arousal, the test showed (p-value 0.0016) that NCA 
was superior to MCML.  

5 DISCUSSION 

As mentioned in the Supervised Dimensionality 
Reduction section, DR with the LDA has a limitation 
that it can only reduce the dimensionality to a number 
not higher than the number of the classes. The other 
algorithms can try to search for any dimensionality as 
long as it is smaller than the dimensionality of the 
original feature space. With this limitation, the LDA 
did not provide any improvement for the accuracy but 
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can only save some storage space and computational 
load. 

The MCML, inspired by the NCA (Globerson and 
Roweis, 2006), most of the time failed to find the 
optimum projection matrix for the features. There 
was no improvement to the accuracy of the system 
compared to using the original feature set. It reduced 
the dimensionality from four to three for valence and 
from three to two for arousal. Similar to the LDA, the 
contribution of the MCML is saving the storage space 
slightly. 

The NCA significantly improved the accuracy of 
emotion recognition. The dimensionalities of the 
feature set were reduced from twenty-three to four 
and from twenty-two to three for valence and arousal, 
respectively. For small number of samples, this might 
be not significant but it will be different for the big 
data analysis. 

The result of this study is compared to the 
accuracies from the previous study (Ferdinando, et 
al., 2016), see Table 10. 

Table 10: Comparison of results to a reference paper, 10-
fold cross validation. 

 Reference 
(Ferdinando, et al., 

2016) 

DR experiment 
(NCA) 

Valence 55.8 ± 7.3 64.1 ± 7.4 (4D) 
Arousal 59.7 ± 7.0 66.1 ± 7.4 (3D) 

We verify whether applying DR to features indeed 
improves the accuracy of the system using t-test 
method with significant level 0.05 and null 
hypothesis that both are from the same distribution. 
The p-values for both valence and arousal are close to 
zero indicating that the improvements are significant. 

Table 11: Comparison of results to a reference paper, LOSO 
validation. 

 Original 
(Ferdinando, et al., 

2016) 

DR experiment 
(NCA) 

Valence 59.2 ± 11.4 61.7 ± 14.1 
Arousal 58.7 ± 9.1 69.6 ± 12.4 

We used t-test again to verify that applying DR 
can improve the performance of the system in LOSO 
validation with significant level 0.05. The p-values 
were 0.1873 and 0.0001 for valence and arousal, 
respectively, indicating that there is no significant 
difference between the original and DR experiment 
for valence but there is a significant improvement 
with the arousal recognition. 

During this study, the algorithms were modified 
such that they are iterative with a simple stopping 
criterion. Further studies related to iterative 

algorithms is needed in order to get more benefits 
from the supervised dimensionality reduction. It 
might be possible also to investigate how to initialize 
matrix A without random number generator. 

6 CONCLUSIONS 

This paper explored supervised DR in emotion 
recognition based on the Mahnob-HCI database. It 
was shown that the supervised DR based on NCA 
increased the accuracy from 55.8% to 64.1% and 
from 59.7% to 66.1% for a 3-class problem in valence 
and arousal respectively using 10-fold cross 
validation. Compared to the initial baseline 
(Ferdinando, et al., 2014), the accuracies improved 
significantly by around 20%. 

With LOSO validation, the supervised DR based 
on NCA increased the accuracy of arousal recognition 
from 58.7% to 69.6% for 3-class problem. However, 
it failed to improve the accuracy for valence as 
indicated by statistical significance test.  

The generalisability of these results is subject to 
certain limitations. For instances, the iterative 
algorithm was very simple such that the whole system 
failed to gain more benefits from the supervised 
dimensionality reduction techniques. Another 
important limitation is about matrix A initialization 
process which used random number generator. Using 
a more sophisticated initialization might improve the 
performance. 

Among the three methods explored in this paper, 
the NCA showed its superiority when it was applied 
to the Mahnob-HCI database, although the MCML 
was developed to improve the performance of the 
NCA. Yet, it will be very interesting to explore the 
same methods with other databases and various 
applications in order to draw more comprehensive 
conclusions for the supervised DR applied to emotion 
recognition based on physiological signals. 
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