REFERENCES
Agrafioti, F., Hatzinakos, D. & Anderson, A. K., 2012.
ECG Pattern Analysis for Emotion Detection. IEEE
Transactions on Affective Computing, 3(1), pp. 102-
115.
Ferdinando, H., Seppänen, T. & Alasaarela, E., 2016.
Comparing Features from ECG Pattern and HRV
Analysis for Emotion Recognition System. Chiang Mai,
Thailand, The annual IEEE International Conference on
Computational Intelligence in Bioinformatics and
Computational Biology (CIBCB 2016).
Ferdinando, H., Ye, L., Seppänen, T. & Alasaarela, E.,
2014. Emotion Recognition by Heart Rate Variability.
Australian Journal of Basic and Applied Sciences,
8(14), pp. 50-55.
Fratini, A., Sansone, M., Bifulco, P. & Cesarelli, M., 2015.
Individual identification via electrocardiogram
analysis. BioMedical Engineering OnLine, 14(78), pp.
1-23.
Globerson, A. & Roweis, S., 2006. Metric Learning by
Collapsing Classes. In: Y. Weiss & B. Schölkopf, eds.
Advances in Neural Information Processing Systems
18. Cambridge, MA: MIT Press, p. 451–458.
Goldberger, J., Roweis, S., Hinton, G. & Salakhutdinov, R.,
2005. Neighborhood Components Analysis. In: L. K.
Saul, Y. Weiss & L. Bottou, eds. Advances in Neural
Information Processing System Vol. 17. Cambridge:
MIT Press, p. 513–520.
Jolliffe, I., 2002. Principal Component Analysis. 2 ed. New
York: Springer Verlag.
Labiak, J. & Livescu, K., 2011. Nearest Neighbors with
Learned Distances for Phonetic Frame Classification.
Florence, Italy., International Speech Communication
Association (ISCA).
Lee, J. A. & Verleysen, M., 2010. Unsupervised
Dimensionality Reduction: Overview and Recent
Advances. Barcelona, Spain, IEEE World Congress on
Computational Intelligence (WCCI) 2010.
McDuff, D. et al., 2012. AffectAura: an intelligent system
for emotional memory. New York, Association for
Computing Machinery (ACM).
McSharry, P. E., Clifford, G. D., Tarassenko, L. & Smith,
L. A., 2003. A Dynamical Model of Generating
Synthetic Electrocardiogram Signals. IEEE
Transactions on Biomedical Engineering, 50(3), pp.
289-294.
Rilling, G., Flandrin, P., Gonçalves, P. & Lilly, J. M., 2007.
Bivariate Empirical Mode Decomposition. IEEE Signal
Processing Letters, 14(12), pp. 936-939.
Romero, J., Diago, L., Shinoda, J. & Hagiwara, I., 2015.
Comparison of Data Reduction Methods for the
Analysis of Iyashi Expressions using Brain Signals.
Journal of Advanced Simulation in Science and
Engineering, 2(2), pp. 349-366.
Sammon, J. W., 1969. A nonlinear mapping algorithm for
data structure analysis. EEE Transactions on
Computers, CC-18(5), pp. 401-409.
Soleymani, M., Lichtenauer, J., Pun, T. & Pantic, M., 2012.
A Multimodal Database for Affect Recognition and
Implicit Tagging. IEEE Transactions on Affective
Computing, 3(1), pp. 1-14.
Sugiyama, M., 2007. Dimensionality Reduction of
Multimodal Labeled Data by Local Fisher Discriminant
Analysis. Journal of Machine Learning Research,
Volume 8, pp. 1027-1061.
Valenzi, S., Islam, T., Jurica, P. & Cichocki, A., 2014.
Individual Classification of Emotions Using EEG.
Journal of Biomedical Science and Engineering,
Volume 7, pp. 604-620.
van der Maaten, L., 2016. Matlab Toolbox for
Dimensionality Reduction - Laurens van der Maaten.
[Online]
Available at: https://lvdmaaten.github.io/drtoolbox/
[Accessed 28 7 2016].
Weinberger, K. Q., Blitzer, J. & Saul, L. K., 2005. Distance
Metric Learning for Large Margin Nearest Neighbor
Classification. Advances in Neural Information
Processing System, Volume 18, p. 1473–1480.
Weinberger, K. Q. & Saul, L. K., 2009. Distance Metric
Learning for Large Margin Nearest Neighbor
Classification. Journal of Machine Learning Research,
Volume 10, pp. 207-244.
Zhang, S. & Zhao, X., 2013. Dimensionality reduction-
based spoken emotion recognition. Multimedia Tools
and Applications, 63(3), p. 615–646.