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Abstract: In this paper, we present and evaluate a new algorithm for online gesture recognition in noisy streams. This 
technique relies upon the proposed LM-WLCSS (Limited Memory and Warping LCSS) algorithm that has 
demonstrated its efficiency on gesture recognition. This new method involves a quantization step (via the K-
Means clustering algorithm). This transforms new data to a finite set. In this way, each new sample can be 
compared to several templates (one per class) and gestures are rejected based on a previously trained rejection 
threshold. Then, an algorithm, called SearchMax, find a local maximum within a sliding window and output 
whether or not the gesture has been recognized. In order to resolve conflicts that may occur, another classifier 
could be completed. As the K-Means clustering algorithm, needs to be initialized with the number of clusters 
to create, we also introduce a straightforward optimization process. Such an operation also optimizes the 
window size for the SearchMax algorithm. In order to demonstrate the robustness of our algorithm, an exper-
iment has been performed over two different data sets. However, results on tested data sets are only accurate 
when training data are used as test data. This may be due to the fact that the method is in an overlearning state. 

1 INTRODUCTION 

In everyday communications, a large part of infor-
mation is conveyed thought gestures. As a result, it 
appears that some benefits would certainly come in 
exploiting gesture recognition technics in Human-
Computer Interactions. Gesture recognition has be-
come important in a wide variety of applications such 
as gesture-to-speech in sign languages (Kılıboz and 
Güdükbay, 2015, Rung-Huei and Ming, 1998). In the 
past years, smartphones and smartwatches have be-
come omnipresent in everyday life (Guiry et al., 
2014), being equipped with multiple motion-related 
sensors such as accelerometers, gyroscopes and mag-
netometers, they allow sensing raw data related to 
movements of users. With the treatment of these data 
streams, multiple techniques allow to detect per-
formed gestures. The literature regarding online ges-
ture recognition counts many methods such as Hidden 
Markov Model (Hyeon-Kyu and Kim, 1999), Support 
Vector Machine (Dardas and Georganas, 2011) and 
Template Matching Methods (TMMs). TMMs ex-
press gestures as templates that are compared with the 

data-stream afterward. The objective of such a com-
putation is to find similarities, where the highest af-
finity involves the recognition of the fittest gesture. 
To do so, TMMs may employ Dynamic Time Warp-
ing (DTW) as similarity measure (Reyes et al., 2011).  

Although DTW-based TMMs achieve accurate 
results, the work described in (Vlachos et al., 2003) 
shows that this method is not well suited to handle 
time series and noise produced by inertial sensors. In 
that sense, the LM-WLCSS (Limited Memory and 
Warping Longest Common Sub-Sequence) aims at 
overcoming issues brought by DTW. This method re-
lies upon the WLCSS method, an extension of the 
LCSS problem. However, Roggen et al. (2015) did 
not focus on class optimization and set arbitrary pa-
rameters for the clustering algorithm and the size of 
the window. In this paper, we want to improve the 
LM-WLCSS algorithm, hence we present a new 
method based on that algorithm by focusing on the 
class optimization process to spot gestures of a 
stream. To achieve it, we train and optimize the LM-
WLCSS for each class. More precisely, the process 
that convert the uncountable set of accelerometer data 
to a countable one, called the quantization process, is 
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performed for each gesture independently as the en-
tire recognition flow. The final decision is achieved 
through a decision fusion. 

The remainder of this paper is organized as fol-
lows. Section 2 reviews template matching methods 
based on the longest common subsequence (LCSS). 
Section 3 describes the proposed method. Next, sec-
tion 4 exposes data sets used for our experiments. 
Section 5 reviews and discusses the results obtained. 
Finally, Section 6 draws a conclusion. 

2 RELATED WORK 

In this paper we present a new approach, based on the 
LM-WLCSS. Our state of the art briefly summarizes 
related methods. We first introduce the training phase 
of the Segmented and Warping LCSS. Then, the 
recognition phase of these methods are described re-
spectively. We also present the LM-WLCSS as our 
technique is derived from it. Finally, we present our 
contributions to the LM-WLCSS. 

Templates matching methods (TMMs) (Hart-
mann and Link, 2010) based on Dynamic Time Warp-
ing (Hartmann and Link, 2010), were demonstrated 
as non-efficient in presence of noisy raw signals (Vla-
chos et al., 2003). To handle such data, Long-Van et 
al. (2012) have introduced two new methods, based 
on Longest Common Subsequence (LCSS), Segment-
edLCSS and WarpingLCSS. Both methods share the 
same training phase. This training allows converting 
accelerometer data into strings. This is due to the fact 
that LCSS is based on a problem that relies upon 
strings. For this, raw signals must be quantized. The 
quantization step, proposed in (Long-Van et al., 
2012), involves computing clusters upon the training 
data with the K-Means algorithm. Those centroids are 
associated with pre-defined symbols to form strings. 
Therefore, each gesture instance is represented as a 
sequence of symbols. A LCSS score is associated 
with each sequence. The higher the LCSS score is be-
tween two elements, the greater the similarity is. A 
gesture instance is thus defined as a temporary tem-
plate. The final motif is chosen based on the one with 
the highest average LCSS score. However, in order to 
be able to compute whether a signal belongs to a ges-
ture class or not, a rejection threshold is associated 
with the template. This threshold is defined as the 
minimum LCSS between the previously elected tem-
plate and all other gesture instances of the same class. 
Yet, Nguyen-Dinh et al. (2014b) have suggested a 
new rejection threshold calculation, based on the 
mean μc and standard deviation σc of LCSS scores for 
the given class c. The resulting threshold ε is defined 

as ε	= μc	-	h	·	σc, where h is an integer that allows ad-
justing the sensitivity of the algorithm for this class. 

In the Segmented LCSS recognition process, the 
stream is stored in a sliding window OW. Each sam-
ple of this window is associated with previously gen-
erated centroids and its related symbol, based on the 
minimum Euclidean distance. Then, this new string is 
entirely compared to the template computed during 
the training. If the resulting score exceeds the rejec-
tion threshold, of the associated class, then the gesture 
is associated to c. However, a gesture may be spotted 
as belonging to more than one class. To resolve such 
conflicts, a resolver may be added, as proposed in 
(Long-Van et al., 2012). It is based on the normalized 
similarity 
NormSim(A, B) = LCSS(A,B)/max(‖A‖,‖B‖), where 
‖ ‖ and ‖ ‖ are respectively the length of A and B 
strings. The class with the highest NormSim is then 
marked as recognized. However, the Segmented 
LCSS method implies to recompute the score each 
time the sliding window is shifted. As a result, the 
computation time is O(T2) (with T the size of the 
longest template) in the worst case. However, without 
OW the LCSS algorithm cannot find boundaries of in-
coming gestures. In this way, Long-Van et al. (2012) 
have introduced a new variant of the LCSS called 
WLCSS (WLCSS). 

The WLCSS method removes need of a sliding 
window and improves the computational cost as it au-
tomatically determines gesture boundaries. In this 
new variant, quantized signals are still compared to 
the template of a given class. Nevertheless, this ver-
sion only update the score for each new element, 
starting from zero. This score grows when a match 
occurs and decreases thanks to penalties otherwise. 
The penalty consists of a weighted Euclidean distance 
between symbols, whether it is a mismatch, a repeti-
tion in the stream or even in the template. In a newer 
version presented in (Nguyen-Dinh et al., 2014b), the 
distance is normalized. Once the matching score is 
updated, the final result is output by the same decision 
maker used in the SegmentedLCSS method. The re-
sulting time complexity for this new method is O(T). 
Although the computational cost WLCSS is one order 
of magnitude lower than the SegmentedLCSS, the 
memory usage remains O(T2) in the worst case. 

Recently, Roggen et al. (2015) have proposed a 
new, microcontroller optimized, version of the 
WLCSS algorithm called Limited Memory and 
WLCSS (LM-WLCSS). Identically to previous meth-
ods, this one is designed to spot motif in noisy raw 
signals and focuses on a single sensor channel. In this 
way, a quantization step may not be required. More-
over, the training phase of this new variant has also 
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been modified to be embedded. This new step con-
sists in recording all gestures, and defining the first 
instance as the template. The rejection threshold for 
this template is then computed thanks to the LM-
WLCSS instead of the LCSS. As the WLCSS has 
edged issues, authors have modified the formula, and 
the resulting matching score is computed as follows: 

Mj,i	 	

0 ,	if	i	 	0	or	j	 	0
Mj‐1,i‐1	 	R ,	if	 Si‐Tj 	 	ε

max

Mj‐1,i‐1	‐	P	∙	 Si‐Tj
Mj‐1,i	‐	P	∙	 Si‐Tj
Mj,i‐1	‐	P	∙	 Si‐Tj

,	if	 Si‐Tj 	 	ε
	 1

Where Si and Tj are respectively defined as the first 
i sample of the stream and the first j sample of the 
template. The resulting score, Mj,i, starts from zero 
and increases of reward R, instead of just one, when 
the distance between the sample and the template 
does not exceed a tolerance threshold ε. Otherwise, 
the warping occurs and the matching score Mj,i de-
creases of a penalty different from the WLCSS. This 
last one is always equal to the weighted distance be-
tween Si and Tj, instead of relying on a mismatch, that 
is to say, a repetition in the stream or even in the tem-
plate. Then, the resulting updated score is given to a 
local maximum searching algorithm called Search-
Max, which filters scores exceeding the threshold 
within a sliding window of size Wf. Then, a one-bit 
event is sent whether a gesture is spot or not. When a 
match occurs, the start point of the gesture may be 
retrieved by backtracking signals. This is performed 
via a window of size Wb to reduce unnecessary stored 
elements. Thus, the overall memory usage, for a word 
of size ws, is defined by NT	 ∗ 	ws	 	NT	 ∗ 	WB with 
NT representing the size of the template. 

Moreover, in order to be able to manage multiple 
acquisition channels with the LM-WLCSS technique, 
two fusion methods were proposed. They are: the sig-
nal fusion (Nguyen-Dinh et al., 2014b, Long-Van et 
al., 2012) and the decision fusion (Bahrepour et al., 
2009, Zappi et al., 2012). Observed performance 
evaluations with these usages were obtained from the 
Opportunity “Drill run”, representing 17 distinct ac-
tivities, and from 1 to 13 nodes. The resulting FScore 
is 85% for the decision fusion and 80% for the signal 
one. It demonstrates that higher is the number of 
nodes, better is the recognition performance. Even 
though other decision fusion methods have been pro-
posed in (Nguyen-Dinh et al., 2014a, Chen and Shen, 
2014), there is no previous work, to the best of our 
knowledge, that focus on optimizing the LM-WLCSS 
for one class and perform a final decision fusion. 
Hence, we introduce in this work a new variant of the 

LM-WLCSS capable to handle multi-class, as well as, 
a straightforward optimization for the quantization 
and the windows size Wf.  

3 A NEW OPTIMIZED LIMITED 
MEMORY AND WARPING 
LCSS APPROACH FOR 
ONLINE GESTURE  
RECOGNITION 

In this section, we introduce the Optimized LM-
WLCSS (OLM-WLCSS), our proposed approach for 
online gesture recognition. This technique is robust 
against noisy signals and strong variability in gesture 
execution as well as methods we previously de-
scribed. This section first describes the quantization 
step, following by the training phase. Then, the recog-
nition block for one class and the optimization pro-
cess are presented. Finally, we describe the decision-
making module. 

3.1 Quantization 

Similarly to the WLCSS, we use K-Means algorithm 
to cluster the  data of the sensor in the quantization 
step. Each sample from the sensor is represented as a 
vector (e.g. an accelerometer is represented as a 3D 
vector). Thus, each sensor vectors are associated with 
their closest cluster centroid by comparing their Eu-
clidean distances. Since the WLCSS do store symbols 
we suggest preserving centroids instead. 

3.2 Training 

This subsection presents the overall vision of our of-
fline training method on one class . In the case of 
two or more classes, the process is repeated. Tem-
plates matching methods find similarities in the signal 
and detect gesture via a motif. The template can be 
elected as the best representation over the whole pos-
sible alternatives of the gesture in a training phase. 
Such patterns maximize the recognition performance. 
The overall process of our training is illustrated in 
Figure 1. Raw signals are first quantized to create a 
transformed training set. Next, this new data set is 
used for electing a template. Finally, resulting motif 
is given, as a parameter, to the rejection threshold cal-
culation method that output the tuple (template, 
threshold). 
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Figure 1: Overall training flow. 

3.2.1 Template Election 

Once the quantization phase is achieved, the next step 
is to elect the best template. As described in (Long-
Van et al., 2012), such process is performed via the 
LCSS method that has been modified to handle vector 
instead of symbols. Each instance was defined as a 
temporary template and then compared to the other 
ones. The reference template is defined thanks to the 
mean resulting score. 

3.2.2 OLM-WLCSS 

The core component of the presented method is the 
computation of the matching score. This is achieved 
thanks to the following formula: 

Mj,i	 	

0 if	i	 	0	or	j	 	0
Mj‐1,i‐1	 	R if	d S ,Tj 	 	0

max

Mj‐1,i‐1	‐	P
Mj‐1,i	‐	P
Mj,i‐1	‐	P

if	d S ,T 	 	0
	 2

	β	∙	d S ,T 	 (3)

Let d be the Euclidean distance between two cen-
troids,  the -th value of the quantized stream, and 

 the -th value of the template. Identically to its pre-
decessors, the initial value of the matching score ,  
is zero. Then, this score is increased with the value of 
R for every match when Si equal to Tj. Otherwise, a 
penalty P weighted by  is applied. The resulting pen-
alty is expressed according to three distinct cases. 
Firstly, when a mismatch between the stream and the 
template occurs. Secondly, when there is repetition in 
the stream and finally, when there is repetition in the 
template. Similarly to the LM-WLCSS, only the last 
column of the matching score is required to compute 
the new one. It should be noted that a backtracking 
method can be implemented to retrieve the starting 
point of the gesture. 

3.2.3 Rejection Threshold Calculation 

The rejection threshold calculation is like the one pre-
sented in the LM-WLCSS algorithm. The score be-
tween the template and all the gesture instances of 
class  is computed with the core component of our 
algorithm. Then, the matching score mean µc and the 
standard deviation σc are calculated. The following 
formula determines the resulting threshold: 

Thd = µ - h · σ, h ∈  (3)

3.3 Recognition Blocks for One Class 

The outcome of the previous phase is the best tuple 
(template, rejection threshold) for each class. These 
two elements define parameters that allow matching 
a gesture to the incoming stream. Figure 2 illustrates 
the recognition flow. As for the training, raw signals 
are first quantized. The resulting sample and the pre-
viously elected template are given to the OLM-
WLCSS method presented in the training phase. 
Next, the matching score is given to the SearchMax 
algorithm that sends a binary event. 

Quantization OLM-WLCSS

SearchMax

Raw Signals

Output  

Figure 2: Overall single class recognition flow. 

3.3.1 SearchMax 

The matching score computed in previous steps 
should increase and exceed the threshold if a gesture 
is performed. However, noisy signals imply fluctua-
tions and undesired detections. To overcome such is-
sues, we used the SearchMax algorithm which was 
introduced in (Roggen et al., 2015). Its goal is to find 
local maxima among matching scores in sliding win-
dow Wf. SearchMax loops over the scores and com-
pares the last and the current score to set a flag; 1 for 
a new local maximum (Maxsm) and 0 for a lower 
value. A counter (Ksm) is increased at each loop. 
When Ksm exceeds the size of Wf the value of Maxsm 
is compared to the threshold Thd. Eventually, the al-
gorithm returns a binary result; 1 if the local maxi-
mum is above Thd to indicate that a gesture has been 
recognized, 0 otherwise. 

3.4 Quantization and SearchMax  
Optimization 

The previously described quantization phase associ-
ates each new sample to the nearest centroid of the 
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class c. Thus, each class has a parameter  that de-
fined the number of clusters generated in the training 
phase. In prior work, Long-Van et al. (2012) have de-
fined it with a value of 20 after they ran some tests. In 
this way, we have also performed some tests with var-
ious cluster numbers. It appears that this parameter 
highly impacts the performance of the algorithm. 
Thus, we propose a straightforward optimization as 
illustrated in Figure 3.This step consists of iteratively 
running the training process with different . There-
fore, we define 2, Nc  as boundaries for , where 
Nc is the number of samples used for the training of 
the class c. For the same reason, we tried to vary the 
sliding windows Wf we previously introduced, and 
noticed better performances from one to another. 
Consequently, we choose to adopt the same way as 
for , and increment Wf from zero to twice the tem-
plate size. The resulting best pair is elected based on 
its performance. To perform the evaluation, we de-
cide to base the vote on the Cohen Kappa, as advice 
in (Ben-David, 2007), instead of accuracy that could 
be high due to a mere chance. The Kappa is computed 
from observed probabilities (P ) and expected ones 
(P ) as follows: 

Kappa = 
Po - Pe

1 - Pe
 

(4)

3.5 Final Decision 

Previous steps were independently performed for 
each gesture class. However, noise in raw signals and 
high variations in gesture execution can lead to mul-
tiple detections. Several methods are available to re-
solve conflicts, such as the weighted decision de-
scribed in (Banos et al., 2012). In our system, we 
choose to employ the lightweight classifier C4.5 
(Quinlan, 2014), that requires a supervised training. 
The overall representation of the recognition flow is 
illustrated in Figure 4. 

k	>	 Nc 

W > Wu 

 

Figure 3: Overall optimization process. 

The training of C4.5 comes directly after the op-
timization step. It is performed using a 10-Fold cross-
validation on a data set previously created. This file 
may be considered as a ∗  matrix, with  is the 
number of samples from the template training data 
set, and M is the amount of recognition blocks. Each 
element ri,j of this matrix represents the result of the 
j-th recognition block for the i-th sample. 

Raw signals

Quantization

OLM-WLCSS

SearchMax

d1
⋮

dm

Quantization

OLM-WLCSS

SearchMax

Template

Rejection 
Threshold

Template

Rejection 
Thresholdc1 cm 

Decision 
Making

Final Decision

Decision vector

 

Figure 4: Overall recognition flow for m class. 

4 DATA USED FOR OUR  
EXPERIMENTS 

In order to evaluate the reliability of our algorithm, 
we have exploited two different data sets. None of 
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these sets are the ones used in (Roggen et al., 2015). 
Indeed, in (Roggen et al., 2015) results were obtained 
on a private data set with arbitrary parameter. In this 
way a proper comparison with this algorithm is not 
possible. 

Table 1: All gestures of Make Coffee data set. 

Make Coffee Gestures 
opening the 
brew basket lid 
(G1) 

getting the 
measuring 
spoon (G6) 

getting the de-
canter (G11) 

pushing the 
shower head 
(G2) 

adding six 
spoons of coffee 
in the filter (G7) 

pouring the wa-
ter into the wa-
ter reservoir for 
5 seconds (G12) 

putting filter 
into the filter 
basket (G3) 

putting away 
the measuring 
spoon (G8) 

putting the de-
canter onto the 
warmer plate 
(G13) 

putting the cof-
fee box in front 
of the coffee-
maker (G4) 

closing the cof-
fee box (G9) 

and closing the 
water lid (G14) 

opening the cof-
fee box (G5) 

putting away 
the coffee box 
(G10) 

 

The first focuses on a unique activity, to make cof-
fee. This activity is repeated 30 times. Since such an 
activity admit 14 distinct gestures, we have split them 
into 14 classes as enumerated in Table 1:.The data set 
was created from data that came from two 9-DoF in-
ertial measurement units (LSM9DS0). Each sensor 
was associated to an Intel Edison platform which was 
powered with a Lithium battery. The sampling rate of 
IMU was fixed at 20 Hz as advice in (Karantonis et 
al., 2006), indeed, most of body movements are 
largely under such a frequency. Once the configura-
tion of IMUs was completed, the two nodes were 
placed on the subject’s wrists. Data were sent to the 
computer via Wi-Fi. To record the activity, two mem-
bers of our team have been selected. The first one was 
making coffee inside our laboratory, while the other 
one was labeling each incoming sample. To ensure a 
good execution, the activity was achieved several 
times by the subject, as a training, without any record-
ing. 

The second data set we use was suggested by the 
Bilkent University (Altun et al., 2010). It includes 
data from eight subjects, where each of them wore 
five 9-DoF inertial measurement units (IMU). The 
data set represents 19 daily or sports activities enu-
merated in Table 2:.The realized experiment only ex-
ploits records from the first subject. 

 
 

Table 2: All gestures of Bilkent University data set. 

Bilkent University Gestures 

Sitting (A1) 
moving around in 
an elevator (A8) 

exercising on a 
cross-trainer (A14)

Standing (A2) 
walking in a park-
ing lot (A9) 

cycling on an exer-
cise bike in hori-
zontal and vertical 
positions (A15-16)

lying on back and 
on right side (A3-
4) 

walking on a tread-
mill with a speed 
of 4 km/h (in flat 
and 15 deg in-
clined positions) 
(A10-11) 

rowing (A17) 

ascending and de-
scending stairs 
(A5-6) 

running on a tread-
mill with a speed 
of 8 km/h (A12) 

jumping (A18) 

standing in an ele-
vator still (A7) 

exercising on a 
stepper (A13) 

playing basketball 
(A19) 

4.1 Evaluation Metrics 

The performance of the presented method was evalu-
ated on three well-known metrics: Accuracy (Acc), 
FScore and Kappa measures. However, the last one 
was prioritized and provides the recognition perfor-
mance of our algorithm. The first two were included 
as comparison purpose since they are widely used in 
classification problems. The FScore is based on the 

precision expressed by, precision	=	
TP

TP	+	FP
 and the re-

call recall = 
TP

TP + FN
. Where TP is true positive values, 

FP false positives, TN true negatives and FN false 
negatives. These values were obtained after compu-
ting a confusion matrix. The final overall formula for 
the FScore computation is given as follows: 

FScore	= 2 ∙
precision	∙	recall

precision	+	recall
 

(5)

5 RESULTS AND DISCUSSION 

This section presents and discusses results we obtain 
with the two previously described data sets. Figure 5 
and Figure 6 summarize metric values for the data set 
Make Coffee on the training and testing sets respec-
tively. Abscess values are the axis taken into account 
for each iteration of the given method. We have taken 
different sensors into account for each run. 3 axes rep-
resent the accelerometer, 6 refer to the accelerometer 
and the gyroscope, 9 all the IMU and 18 the two 
IMUs. The ordinate represents the Kappa, FScore and 
Accuracy, expressed in percentages, for each combi-
nation. 
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Performance results on the Make Coffee data set 
show a considerable drop in the Kappa measure be-
tween the training set and the testing set for every 
axis. The second data set present similar result with a 
Kappa of 81% for the training set and 37% with the 
testing set. 

 

Figure 5: Results observed for the 10-Fold on the training 
set, for the make coffee data set. 

 

Figure 6: Results observed for supplied test set on the make 
coffee data set. 

The observed difference between obtained re-
sults, illustrates a significant limitation regarding the 
performance. This contrast may be due to both the op-
timization of parameters (such as clusters from K-
Means and the size of the window for the SearchMax 
algorithm) and of each classifier over training data. 
We review some methods that falls in the same situa-
tion, meaning good results on training sets but low 
ones on testing sets, that were identified as over-
learned (Gamage et al., 2011). Indeed, as described 
by Witten and Frank (2005), a classifier trained and 
optimized on the same set will achieve accurate re-
sults on this one, but should fall down with independ-
ent test data. Consequently, our proposed method 
may be in an overlearning situation, explaining such 
results. This is probably due to the fact that the pa-
rameters, of the proposed method, have been opti-
mized for the training data set. 

 

6 CONCLUSIONS 

In this paper, we have proposed a new TMM derived 
from the LM-WLCSS technique which aims at recog-
nizing motifs in noisy streams. Several parameters 
were evaluated such as a suitable number of clusters 
for the quantization step, as well as, an adequate size 
of the window. The evaluation we have performed 
suggests promising results over the training set 
(92.7% of Kappa for 3-axis), but we have observed a 
serious drop with testing data (55.7% of Kappa for 3-
axis). Such a contrast may be due to the fact that our 
method is overly dependent on the training data, 
which refers to the proper definition of an overlearn-
ing situation. In a future work we plan to remove pa-
rameters from our method and don’t fall again into an 
overlearning situation. 
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