dynamic aspects are encoded into temporal graphs.
This research opens novel opportunities for inves-
tigation related to the use of several image process-
ing algorithms to highlight important patterns in tem-
poral graphs. We plan to follow this research venue
in our future work. We also plan to incorporate ma-
trix reordering methods (Behrisch et al., 2016) aim-
ing to improve the identification of changing patterns
in graph visual rhythm representations. Another is-
sue refers to the implementation of suitable visualiza-
tion approaches to handle players’ substitutions in a
match.
ACKNOWLEDGEMENTS
The authors would like to thank CAPES, CNPq (grant
#306580/2012-8), FAPESP (grants #2013/50169-1
and #2013/50155-0 ) for the financial support. Au-
thors are also grateful for the support of PUC-
Campinas.
REFERENCES
Bach, B., Pietriga, E., and Fekete, J. (2014). Visualiz-
ing dynamic networks with matrix cubes. In CHI
Conference on Human Factors in Computing Systems,
CHI’14, Toronto, ON, Canada - April 26 - May 01,
2014, pages 877–886.
Beck, F., Burch, M., Diehl, S., and Weiskopf, D. (2016). A
taxonomy and survey of dynamic graph visualization.
Computer Graphics Forum.
Behrisch, M., Bach, B., Riche, N. H., Schreck, T., and
Fekete, J. (2016). Matrix reordering methods for table
and network visualization. Comput. Graph. Forum,
35(3):693–716.
Bezerra, F. N. and Lima, E. (2006). Low cost soccer video
summaries based on visual rhythm. In Proceedings of
the 8th ACM SIGMM International Workshop on Mul-
timedia Information Retrieval, MIR 2006, October 26-
27, 2006, Santa Barbara, California, USA, pages 71–
78.
Brandes, U. and Corman, S. R. (2003). Visual Unrolling
of Network Evolution and the Analysis of Dynamic
Discourse. Information Visualization, 2(1):40–50.
Brandes, U., Indlekofer, N., and Mader, M. (2012). Visual-
ization methods for longitudinal social networks and
stochastic actor-oriented modeling. Social Networks,
34(3):291–308.
Burch, M., H
¨
oferlin, M., and Weiskopf, D. (2011). Layered
timeradartrees. In 15th International Conference on
Information Visualisation, IV 2011, London, United
Kingdom, July 13-15, 2011, pages 18–25.
Casteigts, A., Flocchini, P., Quattrociocchi, W., and San-
toro, N. (2011). Time-Varying Graphs and Dynamic
Networks Ad-hoc, Mobile, and Wireless Networks.
6811(5):346–359.
Chun, S. S., Kim, H., Kim, J., Oh, S., and Sull, S. (2002).
Fast text caption localization on video using visual
rhythm. In Recent Advances in Visual Information
Systems, 5th International Conference, VISUAL 2002
Hsin Chu, Taiwan, March 11-13, 2002, Proceedings,
pages 259–268.
Clemente, F., Couceiro, M., Martins, F., and Mendes, R.
(2015). Using network metrics in soccer: A macro-
analysis. J Sports Sci., 45:123134.
Costa, L. d. F., Rodrigues, F. A., Travieso, G., and Vil-
las Boas, P. R. (2007). Characterization of complex
networks: A survey of measurements. Advances in
physics, 56(1):167–242.
Cotta, C., Mora, A. M., Merelo, J. J., and Merelo-Molina,
C. (2013). A network analysis of the 2010 fifa world
cup champion team play. Journal of Systems Science
and Complexity, 26(1):21–42.
da Silva Pinto, A., Schwartz, W. R., Pedrini, H., and
de Rezende Rocha, A. (2015). Using visual
rhythms for detecting video-based facial spoof at-
tacks. IEEE Trans. Information Forensics and Secu-
rity, 10(5):1025–1038.
Duch, J., Waitzman, J. S., and Amaral, L. a. N. (2010).
Quantifying the performance of individual players in
a team activity. PloS one, 5(6):e10937.
Figueroa, P. J., Leite, N. J., and Barros, R. M. L. (2006a).
Background recovering in outdoor image sequences:
An example of soccer players segmentation. Image
Vision Comput., 24(4):363–374.
Figueroa, P. J., Leite, N. J., and Barros, R. M. L. (2006b).
Tracking soccer players aiming their kinematical mo-
tion analysis. Computer Vision and Image Under-
standing, 101(2):122–135.
Grund, T. (2012). Network structure and team performance:
The case of english premier league soccer teams. So-
cial Networks, 34(4):682–690.
Guimar
˜
aes, S. J. F., Couprie, M., de Albuquerque Ara
´
ujo,
A., and Leite, N. J. (2003). Video segmentation based
on 2d image analysis. Pattern Recognition Letters,
24(7):947–957.
Hurter, C., Ersoy, O., Fabrikant, S. I., Klein, T. R., and
Telea, A. C. (2014). Bundled visualization of dynamic
graph and trail data. IEEE Transactions on Visualiza-
tion and Computer Graphics, 20(8):1141–1157.
Leskovec, J., Kleinberg, J., and Faloutsos, C. (2005).
Graphs over Time: Densification Laws, Shrinking Di-
ameters and Possible Explanations. In KDD, pages
177–187.
Moura, F. A., Martins, L. E., and Cunha, S. E. (2014). Anal-
ysis of football game-related statistics using multivari-
ate techniques. J Sports Sci., 32(20):1881–1887.
Moura, F. A., Martins, L. E. B., Anido, R. D. O., Barros,
R. M. L. D., and Cunha, S. A. (2012). Quantitative
analysis of brazilian football players’ organisation on
the pitch. Sports Biomechanics, 11(1):85–96. PMID:
22518947.
Moura, F. A., Martins, L. E. B., Anido, R. O., Ruffino, P.
R. C., Barros, R. M. L., and Cunha, S. A. (2013).
IVAPP 2017 - International Conference on Information Visualization Theory and Applications
106