ory of human image understanding. Psychological re-
view, 94(2):115.
Burges, C. J. (1998). A tutorial on support vector machines
for pattern recognition. Data mining and knowledge
discovery, 2(2):121–167.
Chevalier, L., Jaillet, F., and Baskurt, A. (2003). Segmen-
tation and superquadric modeling of 3d objects. In
WSCG.
Drews Jr., P., Trujillo, P. N., Rocha, R. P., Campos, M.
F. M., and Dias, J. (2010). Novelty detection and
3d shape retrieval using superquadrics and multi-scale
sampling for autonomous mobile robots. In ICRA,
pages 3635–3640.
Garcia, S. (2009). Fitting primitive shapes to point clouds
for robotic grasping. Master of Science Thesis. School
of Computer Science and Communication, Royal In-
stitute of Technology, Stockholm, Sweden.
Leonardis, A., Jaklic, A., and Solina, F. (1997). Su-
perquadrics for segmenting and modeling range data.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(11):1289–1295.
Marr D, V. (1982). A computational investigation into the
human representation and processing of visual infor-
mation.
Moustakas, K., Tzovaras, D., and Strintzis, M. G. (2007).
Sq-map: Efficient layered collision detection and hap-
tic rendering. IEEE Transactions on Visualization and
Computer Graphics, 13(1):80–93.
Nieuwenhuisen, M., St¨uckler, J., Berner, A., Klein, R.,
and Behnke, S. (2012). Shape-primitive based object
recognition and grasping. In Robotics; Proceedings
of ROBOTIK 2012; 7th German Conference on, pages
1–5. VDE.
Pentland, A. P. (1986). Perceptual organization and the
representation of natural form. Artificial Intelligence,
28(3):293–331.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetter-
ling, W. T. (1986). Numerical recipes: the art of sci-
entific computing. Cambridge U. Press, Cambridge,
MA.
Raja, N. S. and Jain, A. K. (1992). Recognizing geons from
superquadrics fitted to range data. Image and vision
computing, 10(3):179–190.
Rusu, R. B., Blodow, N., and Beetz, M. (2009). Fast
point feature histograms (fpfh) for 3d registration. In
Robotics and Automation, 2009. ICRA’09. IEEE In-
ternational Conference on, pages 3212–3217. IEEE.
Rusu, R. B. and Cousins, S. (2011). 3d is here: Point cloud
library (pcl). In Robotics and Automation (ICRA),
2011 IEEE International Conference on, pages 1–4.
IEEE.
Saito, H. and Kimura, M. (1996). Superquadric modeling
of multiple objects from shading images using genetic
algorithms. In Industrial Electronics, Control, and In-
strumentation, 1996., Proceedings of the 1996 IEEE
IECON 22nd International Conference on, volume 3,
pages 1589–1593. IEEE.
Schnabel, R., Wahl, R., and Klein, R. (2007). Efficient
ransac for point-cloud shape detection. In Computer
graphics forum, volume 26, pages 214–226. Wiley
Online Library.
Solina, F. and Bajcsy, R. (1987). Range image interpretation
of mail pieces with superquadrics.
Solina, F. and Bajcsy, R. (1990). Recovery of paramet-
ric models from range images: The case for su-
perquadrics with global deformations. IEEE trans-
actions on pattern analysis and machine intelligence,
12(2):131–147.
Somani, N., Cai, C., Perzylo, A., Rickert, M., and Knoll,
A. (2014). Object recognition using constraints from
primitive shape matching. In International Sympo-
sium on Visual Computing, pages 783–792. Springer.
Strand, M., Xue, Z., Zoellner, M., and Dillmann, R. (2010).
Using superquadrics for the approximation of objects
and its application to grasping. In Information and Au-
tomation (ICIA), 2010 IEEE International Conference
on, pages 48–53. IEEE.
Suykens, J. A. and Vandewalle, J. (1999). Least squares
support vector machine classifiers. Neural processing
letters, 9(3):293–300.
Tang, S., Wang, X., Lv, X., Han, T. X., Keller, J., He,
Z., Skubic, M., and Lao, S. (2012). Histogram of
oriented normal vectors for object recognition with a
depth sensor. In Asian conference on computer vision,
pages 525–538. Springer.
Tombari, F., Salti, S., and Di Stefano, L. (2010). Unique sig-
natures of histograms for local surface description. In
European conference on computer vision, pages 356–
369. Springer.
Varadarajan, K. M. and Vincze, M. (2011). Object part
segmentation and classification in range images for
grasping. In Advanced Robotics (ICAR), 2011 15th
International Conference on, pages 21–27. IEEE.
Weinberger, K. Q. and Saul, L. K. (2009). Distance met-
ric learning for large margin nearest neighbor clas-
sification. Journal of Machine Learning Research,
10(Feb):207–244.
Xing, W., Liu, W., and Yuan, B. (2004). Superquadric-
based geons recognition utilizing support vector ma-
chines. In Signal Processing, 2004. Proceedings.
ICSP’04. 2004 7th International Conference on, vol-
ume 2, pages 1264–1267. IEEE.
Zhang, Z. (2012). Microsoft kinect sensor and its effect.
IEEE multimedia, 19(2):4–10.