surface, and both reaching values over 0.97.
Moreover, we have proven the feasibility of
reaching spectral emissivities over 0.99 at particular
wavelengths, by means of interferential multilayer
deposition. These patterns were used to calibrate a
temperature sensor. Finally, a good agreement
between simulated and measured values of
reflectance has been verified for these coatings.
ACKNOWLEDGEMENTS
We thank Carmen Cosculluela for her valuable help.
This work was partly supported by the Spanish
MINECO under grant RTC-2014-1847-6, in part by
the Diputación General de Aragón / Fondo Social
Europeo through the funding for the Photonics
Technologies Group (GTF), in part by the
Diputación General de Aragón under FPI
programme B143/12 and in part by the BSH Home
Appliances Group.
REFERENCES
Cao, F., Kraemer, D., Sun, T., Lan, Y., Chen, G., Ren, Z.,
2015. Enhanced Thermal Stability of W-Ni-Al2O3
Cermet-Based Spectrally Selective Solar Absorbers
with Tungsten Infrared Reflectors. Adv. Energy Mater.
5, 1401042. doi:10.1002/aenm.201401042.
Céspedes, E., Wirz, M., Sánchez-García, J.A., Alvarez-
Fraga, L., Escobar-Galindo, R., Prieto, C., 2014. Novel
Mo–Si3N4 based selective coating for high
temperature concentrating solar power applications.
Sol. Energy Mater. Sol. Cells 122, 217–225.
doi:10.1016/j.solmat.2013.12.005.
DeWitt, D.P., Nutter, G.D., 1988. Theory and Practice of
Radiation Thermometry. John Wiley & Sons.
Hernandez-Pinilla, D., Rodriguez-Palomo, A., Alvarez-
Fraga, L., Cespedes, E., Prieto, J.E., Munoz-Martin,
A., Prieto, C., 2016. MoSi2-Si3N4 absorber for high
temperature solar selective coating. Sol. Energy
Mater. Sol. Cells 152, 141–146.
doi:10.1016/j.solmat.2016.04.001.
H.J.Gläser, 2000. Large Area Coating. Von Ardenne
Anlagentechnik GmbH, Dresden.
Howell, J.R., Menguc, M.P., Siegel, R., 2015. Thermal
Radiation Heat Transfer, 6th Edition. CRC Press.
Imaz, E., Alonso, R., Heras, C., Salinas, I., Carretero, E.,
Carretero, C., 2014. Infrared thermometry system for
temperature measurement in induction heating
appliances. IEEE Trans. Ind. Electron. 61, 2622–2630.
doi:10.1109/TIE.2013.2281166.
J. A. Dobrowolski, 1995. Optical properties of films and
coatings., in: Handbook of Optics. McGraw-Hill.
Lasobras, J., Alonso, R., Carretero, C., Carretero, E.,
Imaz, E., 2014. Infrared sensor-based temperature
control for domestic induction cooktops. Sens. Switz.
14, 5278–5295. doi:10.3390/s140305278.
Macleod, H.A., 2010. Thin-Film Optical Filters, Fourth
Edition. CRC Press.
Sergeant, N.P., Pincon, O., Agrawal, M., Peumans, P.,
2009. Design of wide-angle solar-selective absorbers
using aperiodic metal-dielectric stacks. Opt. Express
17, 22800–22812.
Setien-Fernandez, I., Echaniz, T., Gonzalez-Fernandez, L.,
Perez-Saez, R.B., Cespedes, E., Sanchez-Garcia, J.A.,
Alvarez-Fraga, L., Escobar Galindo, R., Albella, J.M.,
Prieto, C., Tello, M.J., 2013. First spectral emissivity
study of a solar selective coating in the 150-600
degrees C temperature range. Sol. Energy Mater. Sol.
Cells 117, 390–395.
doi:10.1016/j.solmat.2013.07.002.
Thelen, A., 1989. Design of Optical Interference Coatings.
McGraw-Hill.