Bar-Shalom, Y., Willett, P. K., and Tian, X. (2011). Track-
ing and data fusion. YBS publishing.
Bevilacqua, A., Di Stefano, L., and Azzari, P. (2006). Peo-
ple tracking using a time-of-flight depth sensor. In
IEEE International Conf. on Video and Signal Based
Surveillance. AVSS ’06., pages 89–89.
Burges, C. J. (1998). A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge
Discovery, 2(2):121–167.
Cai, Z., Yu, Z. L., Liu, H., and Zhang, K. (2014). Counting
people in crowded scenes by video analyzing. In In-
dustrial Electronics and Applications (ICIEA), 2014
IEEE 9th Conference on, pages 1841–1845.
Dan, B.-K., Kim, Y.-S., Suryanto, Jung, J.-Y., and Ko, S.-
J. (2012). Robust people counting system based on
sensor fusion. IEEE Trans. on Consumer Electronics,
58(3):1013–1021.
Del Pizzo, L., Foggia, P., Greco, A., Percannella, G., and
Vento, M. (2016). Counting people by rgb or depth
overhead cameras. Pattern Recognition Letters.
Ekman, M. (2008). Particle filters and data association for
multi-target tracking. In Information Fusion, 2008
11th International Conference on, pages 1–8.
Gal
ˇ
c
´
ık, F. and Gargal
´
ık, R. (2013). Real-time depth map
based people counting. In International Conf. on Ad-
vanced Concepts for Intelligent Vision Systems, pages
330–341. Springer.
Hsu, C.-W. and Lin, C.-J. (2002). A comparison of methods
for multiclass support vector machines. IEEE trans.
on Neural Networks, 13(2):415–425.
Isard, M. and Blake, A. (1998). Condensation - conditional
density propagation forvisual tracking. International
Journal of Computer Vision, 29(1):5–28.
Jeong, C. Y., Choi, S., and Han, S. W. (2013). A method
for counting moving and stationary people by interest
point classification. In Image Processing (ICIP), 2013
20th IEEE International Conference on, pages 4545–
4548.
Jia, L. and Radke, R. (2014). Using time-of-flight measure-
ments for privacy-preserving tracking in a smart room.
IEEE Trans. on Industrial Informatics, 10(1):689–
696.
Jia, Z., Balasuriya, A., and Challa, S. (2008). Autonomous
vehicles navigation with visual target tracking: Tech-
nical approaches. Algorithms, 1(2):153–182.
Jim
´
enez, J. A., Mazo, M., Ure
˜
na, J., Hern
´
andez, A., Al-
varez, F., Garc
´
ıa, J. J., and Santiso, E. (2005). Us-
ing PCA in time-of-flight vectors for reflector recog-
nition and 3-D localization. IEEE Trans. on Robotics,
21(5):909–924.
Liu, J. S. and Chen, R. (1998). Sequential monte carlo
methods for dynamic systems. Journal of the Ameri-
can Statistical Association, 93:1032–1044.
Luna, C. A., Losada-Gutierrez, C., Fuentes-Jimenez,
D., Fernandez-Rincon, A., Mazo, M., and Macias-
Guarasa, J. (2016). Robust people detection using
depth information from an overhead time-of-flight
camera. Expert Systems with Applications, pages –.
MacCormick, J. and Blake, A. (2000). A probabilistic ex-
clusion principle for tracking multiple objects. Inter-
national Journal of Computer Vision, 39(1):57–71.
Macias-Guarasa, J., Losada-Gutierrez, C., Fuentes-
Jimenez, D., Fernandez, R., Luna, C. A., Fernandez-
Rincon, A., and Mazo, M. (2016). The GEINTRA
Overhead ToF People Detection (GOTPD1) database.
http://www.geintra-uah.org/datasets/gotpd1. (ac-
cessed June 2016).
Marron, M., Garcia, J. C., Sotelo, M. A., Fernandez, D.,
and Pizarro, D. (2005). ”xpfcp”: an extended parti-
cle filter for tracking multiple and dynamic objects in
complex environments. In 2005 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
pages 2474–2479.
Marron, M., Garcia, J. C., Sotelo, M. A., Pizarro, D., Mazo,
M., Canas, J. M., Losada, C., and Marcos, A. (2010).
Stereo vision tracking of multiple objects in complex
indoor environments. Sensors, 10(10):8865.
Matzner, S., Heredia-Langner, A., Amidan, B., Boettcher,
E., Lochtefeld, D., and Webb, T. (2015). Standoff
human identification using body shape. In Technolo-
gies for Homeland Security (HST), 2015 IEEE Inter-
national Symposium on, pages 1–6.
Ramanan, D., Forsyth, D. A., and Zisserman, A. (2006).
Tracking People by Learning Their Appearance. IEEE
Trans. on Pattern Analysis and Machine Intelligence,
29(1):65–81.
Rauter, M. (2013). Reliable human detection and tracking
in top-view depth images. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion Workshops, pages 529–534.
Sell, J. and O’Connor, P. (2014). The Xbox one system on
a chip and Kinect sensor. Micro, IEEE, 34(2):44–53.
Shlens, J. (2014). A tutorial on principal component anal-
ysis. arXiv preprint arXiv:1404.1100. (accessed June
2016).
Stahlschmidt, C., Gavriilidis, A., Velten, J., and Kummert,
A. (2014). Applications for a people detection and
tracking algorithm using a time-of-flight camera. Mul-
timedia Tools and Applications, pages 1–18.
Zhang, X., Yan, J., Feng, S., Lei, Z., Yi, D., and Li, S. Z.
(2012). Water filling: Unsupervised people count-
ing via vertical kinect sensor. In Advanced Video and
Signal-Based Surveillance (AVSS), 2012 IEEE Ninth
International Conference on, pages 215–220. IEEE.
Zhu, L. and Wong, K.-H. (2013). Human tracking and
counting using the kinect range sensor based on ad-
aboost and kalman filter. In International Symposium
on Visual Computing, pages 582–591. Springer.
VISAPP 2017 - International Conference on Computer Vision Theory and Applications
564