ginzburg-landau models. International Journal of
Computer Vision, 65(1-2):29–42.
Aubert, G. and Kornprobst, P. (2006). Mathematical prob-
lems in image processing: partial differential equa-
tions and the calculus of variations, volume 147.
Springer Science & Business Media.
Banerjee, S., Mitra, S., Shankar, B. U., and Hayashi, Y.
(2016). A novel gbm saliency detection model using
multi-channel mri. PloS one, 11(1):e0146388.
Bylinskii, Z., Judd, T., Borji, A., Itti, L., Durand, F., Oliva,
A., and Torralba, A. Mit saliency benchmark.
Chambolle, A. (2004). An algorithm for total variation min-
imization and applications. Journal of Mathematical
imaging and vision, 20(1-2):89–97.
Chambolle, A. and Lions, P.-L. (1997). Image recovery via
total variation minimization and related problems. Nu-
merische Mathematik, 76(2):167–188.
Charbonnier, P., Blanc-F
´
eraud, L., Aubert, G., and Barlaud,
M. (1997). Deterministic edge-preserving regulariza-
tion in computed imaging. IEEE Transactions on im-
age processing, 6(2):298–311.
Gilboa, G. and Osher, S. (2008). Nonlocal operators with
applications to image processing. Multiscale Model-
ing & Simulation, 7(3):1005–1028.
Harel, J., Koch, C., and Perona, P. (2006). Graph-based vi-
sual saliency. In Advances in neural information pro-
cessing systems, pages 545–552.
Hinterm
¨
uller, M. and Wu, T. (2014). A smoothing descent
method for nonconvex tvˆ q-models. In Efficient Algo-
rithms for Global Optimization Methods in Computer
Vision, pages 119–133. Springer.
Li, M., Zhan, Y., and Zhang, L. (2013). Nonlocal variational
model for saliency detection. Mathematical Problems
in Engineering, 2013.
Liu, R., Cao, J., Lin, Z., and Shan, S. (2014). Adaptive par-
tial differential equation learning for visual saliency
detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
3866–3873.
Liu, Z., Meur, L., and Luo, S. (2013). Superpixel-based
saliency detection. In 2013 14th International Work-
shop on Image Analysis for Multimedia Interactive
Services (WIAMIS), pages 1–4. IEEE.
Menze, B., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Fara-
hani, K., Kirby, J., Burren, Y., Porz, N., Slotboom,
J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.-
A., Arbel, T., Avants, B., Ayache, N., Buendia, P.,
Collins, L., Cordier, N., Corso, J., Criminisi, A., Das,
T., Delingette, H., Demiralp, C., Durst, C., Dojat, M.,
Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker,
B., Golland, P., Guo, X., Hamamci, A., Iftekharud-
din, K., Jena, R., John, N., Konukoglu, E., Lashkari,
D., Antonio Mariz, J., Meier, R., Pereira, S., Pre-
cup, D., Price, S. J., Riklin-Raviv, T., Reza, S., Ryan,
M., Schwartz, L., Shin, H.-C., Shotton, J., Silva, C.,
Sousa, N., Subbanna, N., Szekely, G., Taylor, T.,
Thomas, O., Tustison, N., Unal, G., Vasseur, F., Win-
termark, M., Hye Ye, D., Zhao, L., Zhao, B., Zikic,
D., Prastawa, M., Reyes, M., and Van Leemput, K.
(2014). The Multimodal Brain Tumor Image Segmen-
tation Benchmark (BRATS). IEEE Transactions on
Medical Imaging, page 33.
Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear to-
tal variation based noise removal algorithms. Physica
D: Nonlinear Phenomena, 60(1):259–268.
Rueda, A., Gonz
´
alez, F., and Romero, E. (2013).
Saliency-based characterization of group differences
for magnetic resonance disease classification. Dyna,
80(178):21–28.
Samson, C., Blanc-F
´
eraud, L., Aubert, G., and Zerubia, J.
(1998). Image classification using a variational ap-
proach. PhD thesis, INRIA.
Thota, R., Vaswani, S., Kale, A., and Vydyanathan, N.
(2016). Fast 3d salient region detection in medical im-
ages using gpus. In Machine Intelligence and Signal
Processing, pages 11–26. Springer.
Tomasi, C. and Manduchi, R. (1998). Bilateral filtering for
gray and color images. In Computer Vision, 1998.
Sixth International Conference on, pages 839–846.
IEEE.
Wang, Y., Liu, R., Song, X., and Su, Z. (2014). Saliency
detection via nonlocal l {0} minimization. In Asian
Conference on Computer Vision, pages 521–535.
Springer.
Weickert, J. (1998). Anisotropic diffusion in image process-
ing, volume 1. Teubner Stuttgart.
Yang, Q., Tan, K.-H., and Ahuja, N. (2009). Real-time o
(1) bilateral filtering. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on,
pages 557–564. IEEE.
Zhan, Y. (2011). The nonlocal-laplacian evolution for im-
age interpolation. Mathematical Problems in Engi-
neering, 2011.
A Non-Local Diffusion Saliency Model for Magnetic Resonance Imaging
107