for our particular problem, and hence improve track-
ing accuracy at the cost of some additional computa-
tional effort.
ACKNOWLEDGMENT
This work has been partially supported by the
Portuguese Foundation for Science and Tech-
nology (FCT) project [UID/EEA/50009/2013].
Rui Figueiredo is funded by FCT PhD grant
PD/BD/105779/2014.
REFERENCES
Ahmad, S. and Yu, A. J. (2013). Active sensing as
bayes-optimal sequential decision making. CoRR,
abs/1305.6650.
Araya, M., Buffet, O., Thomas, V., and Charpillet, F.
(2010). A pomdp extension with belief-dependent re-
wards. In Advances in Neural Information Processing
Systems, pages 64–72.
Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-
time analysis of the multiarmed bandit problem. Ma-
chine learning, 47(2-3):235–256.
Bernardin, K. and Stiefelhagen, R. (2008). Evaluating mul-
tiple object tracking performance: the clear mot met-
rics. EURASIP Journal on Image and Video Process-
ing, 2008(1):1–10.
Bewley, A., Ge, Z., Ott, L., Ramos, F., and Upcroft, B.
(2016). Simple online and realtime tracking. CoRR,
abs/1602.00763.
Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M.,
Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez,
D., Samothrakis, S., and Colton, S. (2012). A survey
of monte carlo tree search methods. IEEE Transac-
tions on Computational Intelligence and AI in Games,
4(1):1–43.
Burkard, R., Dell’Amico, M., and Martello, S. (2009). As-
signment Problems. Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, USA.
Butko, N. J. and Movellan, J. R. (2010). Infomax control
of eye movements. Autonomous Mental Development,
IEEE Transactions on, 2(2):91–107.
Chong, E. K., Kreucher, C. M., and Hero, A. O. (2008).
Monte-carlo-based partially observable markov deci-
sion process approximations for adaptive sensing. In
Discrete Event Systems, 2008. WODES 2008. 9th In-
ternational Workshop on, pages 173–180. IEEE.
Doll
´
ar, P., Appel, R., Belongie, S., and Perona, P. (2014).
Fast feature pyramids for object detection. PAMI.
Gedikli, S., Bandouch, J., von Hoyningen-Huene, N.,
Kirchlechner, B., and Beetz, M. (2007). An adaptive
vision system for tracking soccer players from vari-
able camera settings. In Proceedings of the 5th In-
ternational Conference on Computer Vision Systems
(ICVS).
Gelly, S., Kocsis, L., Schoenauer, M., Sebag, M., Silver,
D., Szepesv
´
ari, C., and Teytaud, O. (2012). The grand
challenge of computer go: Monte carlo tree search and
extensions. Communications of the ACM, 55(3):106–
113.
Hamid Rezatofighi, S., Milan, A., Zhang, Z., Shi, Q., Dick,
A., and Reid, I. (2015). Joint probabilistic data asso-
ciation revisited. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 3047–
3055.
Kocsis, L. and Szepesv
´
ari, C. (2006). Bandit based monte-
carlo planning. In European conference on machine
learning, pages 282–293. Springer.
Leal-Taix
´
e, L., Milan, A., Reid, I., Roth, S., and Schindler,
K. (2015). MOTChallenge 2015: Towards a bench-
mark for multi-target tracking. arXiv:1504.01942
[cs]. arXiv: 1504.01942.
Malloy, M. L. and Nowak, R. D. (2014). Near-optimal
adaptive compressed sensing. IEEE Transactions on
Information Theory, 60(7):4001–4012.
Mihaylova, L., Lefebvre, T., Bruyninckx, H., Gadeyne, K.,
and Schutter, J. D. (2002). Active sensing for robotics
- a survey. In in Proc. 5 th Intl Conf. On Numerical
Methods and Applications, pages 316–324.
Okuma, K., Taleghani, A., De Freitas, N., Little, J. J., and
Lowe, D. G. (2004). A boosted particle filter: Multi-
target detection and tracking. In European Conference
on Computer Vision, pages 28–39. Springer.
Ross, S., Pineau, J., Paquet, S., and Chaib-Draa, B. (2008).
Online planning algorithms for pomdps. Journal of
Artificial Intelligence Research, 32:663–704.
Sommerlade, E. and Reid, I. (2010). Probabilistic surveil-
lance with multiple active cameras. In Robotics and
Automation (ICRA), 2010 IEEE International Confer-
ence on, pages 440–445. IEEE.
Spaan, M. T., Veiga, T. S., and Lima, P. U. (2015).
Decision-theoretic planning under uncertainty with
information rewards for active cooperative percep-
tion. Autonomous Agents and Multi-Agent Systems,
29(6):1157–1185.
Van Rooij, I. (2008). The tractable cognition thesis. Cogni-
tive science, 32(6):939–984.
Wang, J. R. and Parameswaran, N. (2004). Survey of sports
video analysis: research issues and applications. In
Proceedings of the Pan-Sydney area workshop on Vi-
sual information processing, pages 87–90. Australian
Computer Society, Inc.
Xu, Y. and Chun, M. M. (2009). Selecting and perceiving
multiple visual objects. Trends in cognitive sciences,
13(4):167–174.
Zitnick, C. L. and Doll
´
ar, P. (2014). Edge boxes: Locating
object proposals from edges. In ECCV.
Efficient Resource Allocation for Sparse Multiple Object Tracking
307