in dermoscopy images using adaptive critic design,
Skin Res Technol, 18(4), pp.389-396.
Cheng, B. et al., 2013, Automatic dirt trail analysis in
dermoscopy images, Skin Res Technol, 19(1), pp.e20-
26.
Dua, R. et al., 2004, Detection of basal cell carcinoma
using electrical impedance and neural networks, IEEE
Trans Biomed Eng, 51(1), pp.66-71.
Duan, L. et al., 2014, Automated identification of basal
cell carcinoma by polarization-sensitive optical
coherence tomography, Biomed Opt Express, 5(10),
pp.3717-3729.
Eberhardt, C. et al., 2004, Early detection of skin cancer
(EDISCIM) through the use of non-invasive confocal
imaging, Stud Health Technol Inform, 103, pp.279-
286.
Gambichler, T., Moussa, G., Altmeyer, P., 2008, A pilot
study of fluorescence diagnosis of basal cell using a
digital flash light-based imaging system, Photo
dermatol Photoimmunol Photomed, 24(2), pp.67-71.
Gutman, D., Codella, N.C.F., Celebi, E., Helba, B.,
Marchetti, M., Mishra, N., Halpern, A., 2016, Skin
Lesion Analysis toward Melanoma Detection: A
Challenge at the International Symposium on
Biomedical Imaging (ISBI) 2016, hosted by the
International Skin Imaging Collaboration (ISIC),
arXiv preprint arXiv:1605.01397.
Guvenc, P. et al., 2013, Sector expansion and elliptical
modeling of blue-gray ovoids for basal cell carcinoma
discrimination in dermoscopy images, Skin Res
Technol, 19(1), pp.e532-536.
Hance, G.A., Umbaugh, S.E., Moss, R.H., Stoecker, W.V.,
1996, Unsupervised color image segmentation: with
application to skin tumor borders, IEEE Eng Med Biol,
15(1), pp. 104–111.
Heckbert, P., 1982, Color image quantization for frame
buffer display, SIGGRAPH Proceedings of the 9th
annual conference on Computer Graphics and
Interactive Techniques, 82, pp.297-307.
Huang, L.K., Huang, M.J., 1995, Image thresholding by
minimizing the measures of fuzziness, Pattern
Recognition, 28(1), pp.41-51.
Jella, P., 2004, Pigment network extraction and salient
point analysis. M.S. Thesis in Electrical Engineering,
University of Missouri, Rolla, MO, USA.
Kasmi, R., 2016, Biologically inspired Skin lesion
segmentation process, Ph.D. Dept. Elect. Eng., Univ.
Bejaia, Bejaia, Algeria.
Kaur, R., LeAnder, R., Mishra, N.K., Hagerty, J.R.,
Kasmi, R., Stanley, R.J., Celebi, M.E., Stoecker,
W.V., 2016, Thresholding methods for lesion
segmentation of basal cell carcinoma in dermoscopy
images, Skin Research and Technology, 2016, doi:
10.1111/srt.12352 (in press).
Kaushik, V.S.N. et al., 2013, The Median Split Algorithm
for Detection of Critical Melanoma Color Features,
VISAPP, 1, pp.492-495.
Kefel, S. et al., 2012, Discrimination of basal cell
carcinoma from benign lesions based on extraction of
ulcer features in polarized-light dermoscopy images,
Skin Res Technol, 18(4), pp.471-475.
Kefel, S., Kefel, S.P., LeAnder, R.W., Kaur, R., Kasmi,
R., Mishra, N.K., Rader, R.K., Cole, J.G., Woolsey,
Z.T., Stoecker, W.V., 2016, Adaptable texture-based
segmentation by variance and intensity for automatic
detection of semitranslucent and pink blush areas in
basal cell carcinoma, Skin Research and Technology,
22(4), pp. 412-422.
Kopriva, I. et al., 2007, Visualization of basal cell
carcinoma by fluorescence diagnosis and independent
component analysis, Photodiagnosis Photodyn Ther,
4(3), pp.190-196.
Landini, G., 2013, http://fiji.sc/Auto_Threshold#Li v1.15.
Larraona-Puy, M. et al., 2009, Development of Raman
microspectroscopy for automated detection and
imaging of basal cell carcinoma, J Biomed Opt, 14(5),
054031.
Li, C.H., Tam, P.K., 1998, An iterative algorithm for
minimum cross entropy thresholding, Pattern Recog
Lett, 19(8), pp.771-776.
Ly, E. et al., 2009, Differential diagnosis of cutaneous
carcinomas by infrared spectral micro-imaging
combined with pattern recognition, Analyst, 134(6),
pp.1208-1214.
Marghoob, A.A., Malvehy, J., Braun, F.P., 2012, An Atlas
of Dermoscopy, 2nd Edition, Boca Raton FL
:CRC
Press.
Mishra, N., 2014, Automated classification of malignant
melanoma based on detection of atypical pigment
network in dermoscopy images of skin lesions. Ph.D.
Thesis, Department of Electrical and Computer
Engineering, Missouri University of Science and
Technology, Rolla, MO.
Mishra, N.K., Celebi, M.E., 2016, An overview of
melanoma detection in dermoscopy images using
image processing and machine learning, arXiv
preprint arXiv:1601.07843.
Moss, R.H. et al., 1989, Skin cancer recognition by
computer vision, Comput Med Imaging Graph, 13(1),
pp.31-36.
Nijssen, A. et al., 2002, Discriminating basal cell
carcinoma from its surrounding tissue by Raman
spectroscopy, J Invest Dermatol, 119(1), pp.64-69.
Otsu, N., 1979, A threshold selection method from grey
level histograms, IEEE Trans Systems, Man, Cybern,
9(1), pp.62-66.
Riddler, T.W., Calvard, S., 1978, Picture thresholding
using an iterative selection method, IEEE Trans
Systems, Man, Cybern, 8, pp. 630-632.
Rogers, H.W. et al., 2010, Incidence estimate of
nonmelanoma skin cancer in the United States, 2006.
Arch Dermatol, 146(3), pp.283–287.
Rogers, H.W., Coldiron, B.M., 2013, Analysis of skin
cancer treatment and costs in the United States
Medicare population, 1996-2008, Dermatol Surg, 39(1
Pt 1), pp.35-42.
Sforza, G., Castellano, G., Arika, S.K., Leander, R.W.,
Stanley, R.J., Stoecker, W.V., Hagerty, J.R., 2012,
Using adaptive thresholding and skewness correction
to detect gray areas in melanoma in situ images, IEEE