Signals. Circulation 101(23):e215-e220 [Circulation
Electronic
Pages; http://circ.ahajournals.org/content/101/23/e215.
full
Gu, W., Vieira, A. R., Hoekstra, R. M., Griffin, P. M., &
Cole, D. , 2015. Use of random forest to estimate
population attributable fractions from a case-control
study of Salmonella enterica serotype Enteritidis
infections. Epidemiology and Infection, 1-9.
Ho KM, Dobb GJ, Knuiman M, et al. 2006. A comparison
of admission and worst 24-hour Acute Physiology and
Chronic Health Evaluation II scores
in predicting hospital mortality: a retrospective cohort
study. Crit Care; 10:R4.
Iezzoni LI. Risk Adjustment for Measuring Health
Outcomes Ann Arbor. 1994. Mich: Health
Administration Press.
Inouye, S.K., Peduzzi, P., Robison, J., Hughes, J., Horwitz,
R., Concato, J, MPH, 1998. Importance of Functional
Measures in Predicting Mortality Among Older
Hospitalized Patients. JAMA. 1998;279(15):1187-
1193. doi:10.1001/jama.279.15.1187.
Johnson AEW, Pollard TJ, Shen L, Lehman L, Feng M,
Ghassemi M, Moody B, Szolovits P, Celi LA, and Mark
RG. 2016. MIMIC-III, a freely accessible critical care
database. Scientific Data. 10.1038/sdata.2016.35.
Kuzniewicz MW1, Vasilevskis EE, Lane R, Dean
ML, Trivedi NG, Rennie DJ, Clay T, Kotler
PL, Dudley RA. 2008. Variation in ICU risk-adjusted
mortality: impact of methods of assessment and
potential confounders. Chest. 2008;133(6):1319-27.
doi: 10.1378/chest.07-3061.
Levy, C., Kheirbek, R,, Alemi, F., Wojtusiak, J., Sutton, B,,
Williams, A.R. and Williams, A., 2015. Predictors of
six-month mortality among nursing home residents:
diagnoses may be more predictive than functional
disability. Journal of Palliative Medicine, 18(2), 100-6.
Moreno, RP, Metnitz, P.G., Almeida, E, et al., 2005. SAPS
3--From evaluation of the patient to evaluation of the
intensive care unit. Part 2: Development of a prognostic
model for hospital mortality at ICU admission.
Intensive Care Med; 31:1345.
Moskovitch, R. and Shahar, Y., 2015. Classification-driven
temporal discretization of multivariate time series. Data
Mining and Knowledge Discovery, 29(4), pp.871-913.
Ngufor, C., Wojtusiak, J., Hooker, A., Oz, T. and Hadley,
J., 2014. Extreme Logistic Regression: A Large Scale
Learning Algorithm with Application to Prostate
Cancer Mortality Prediction. Proceedings of the 27th
International Florida Artificial Intelligence Research
Society Conference.
Rocker, G., Cook, D., Sjokvist, V., Weaver, B., Finfer, S.,
McDonald, E., Marshall, J., Kirby, A., Levy, M., at al.,
2004. Clinician Predictions of Intensive Care Unit
Mortality, Crit Care Med. 2004;32 (5)1
Rose, Sherri, 2013. "Mortality risk score prediction in an
elderly population using machine learning." American
journal of epidemiology 177.5. 443-452.
Taylor, R. Andrew, et al. 2016. Prediction of In‐ hospital
Mortality in Emergency Department Patients with
Sepsis: A Local Big Data–Driven, Machine Learning
Approach. Academic Emergency Medicine.
Van Walraven, C., Dhalla, IA, Bell, C., et al., 2010.
Derivation and validation of an index to predict early
death or unplanned readmission after discharge from
hospital to the community. CMAJ 2010 Apr 6; 182(6):
551–557. doi: 10.1503/cmaj.091117. PMCID:
PMC2845681
Van Walraven C, Wong J, Forster AJ. 2012. LACE+
index: extension of a validated index to predict early
death or urgent readmission after hospital discharge
using administrative data. Open Med. 2012 Jul
19;6(3):e80-90. PMCID: PMC3659212
Vasilevskis EE, Kuzniewicz MW, Cason BA, Lane
RK, Dean ML, Clay T, Rennie DJ, Vittinghoff
E, Dudley RA. 2009. Mortality probability model III
and simplified acute physiology score II: assessing their
value in predicting length of stay and comparison to
APACHE IV. Chest. 136(1):89-101. doi:
10.1378/chest.08-2591.
Verduijn, M., Sacchi, L., Peek, N., Bellazzi, R., de Jonge,
E. and de Mol, B.A., 2007. Temporal abstraction for
feature extraction: A comparative case study in
prediction from intensive care monitoring data.
Artificial intelligence in medicine, 41(1), pp.1-12.
Wojtusiak, J., Elashkar, E., Mogharab, R., 2016. Integrating
Complex Health Data for Analytics. The Machine
Learning and Inference Laboratory, electronic
circulation. MLI 16-1.
C-Lace: Computational Model to Predict 30-Day Post-Hospitalization Mortality
177