REFERENCES
Alazab, M., Layton, R., Venkataraman, S., and Watters, P.
(2010). Malware detection based on structural and be-
havioural features of api calls.
Bailey, M., Oberheide, J., Andersen, J., Mao, Z. M., Ja-
hanian, F., and Nazario, J. (2007). Automated clas-
sification and analysis of internet malware. In Re-
cent Advances in Intrusion Detection, pages 178–197.
Springer.
Breiman, L. (1996). Bagging predictors. Machine learning,
24(2):123–140.
Ceron, J. M., Margi, C. B., and Granville, L. Z. (2016).
Mars: An sdn-based malware analysis solution. In
2016 IEEE Symposium on Computers and Communi-
cation (ISCC), pages 525–530. IEEE.
Chang, E. Y., Li, B., Wu, G., and Goh, K. (2003). Statistical
learning for effective visual information retrieval. In
ICIP (3), pages 609–612. Citeseer.
Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine learning, 20(3):273–297.
Cuckoo Sandbox (2015). Automated malware analysis -
cuckoo sandbox. http://www.cuckoosandbox.org/.
Fan, C.-I., Hsiao, H.-W., Chou, C.-H., and Tseng, Y.-F.
(2015). Malware detection systems based on api log
data mining. In Computer Software and Applications
Conference (COMPSAC), 2015 IEEE 39th Annual,
volume 3, pages 255–260. IEEE.
Faruki, P., Laxmi, V., Gaur, M. S., and Vinod, P. (2012).
Behavioural detection with api call-grams to identify
malicious pe files. In Proceedings of the First Inter-
national Conference on Security of Internet of Things,
pages 85–91. ACM.
Ferri, C., Hern
´
andez-Orallo, J., and Modroiu, R. (2009).
An experimental comparison of performance mea-
sures for classification. Pattern Recognition Letters,
30(1):27–38.
Firdausi, I., Lim, C., Erwin, A., and Nugroho, A. S.
(2010). Analysis of machine learning techniques used
in behavior-based malware detection. In Advances
in Computing, Control and Telecommunication Tech-
nologies (ACT), 2010 Second International Confer-
ence on, pages 201–203. IEEE.
Hansen, S. S., Larsen, T. M. T., Stevanovic, M., and Peder-
sen, J. M. (2016). An approach for detection and fam-
ily classification of malware based on behavioral anal-
ysis. In 2016 International Conference on Computing,
Networking and Communications (ICNC), pages 1–5.
IEEE.
Huang, J. and Ling, C. X. (2005). Using auc and accuracy
in evaluating learning algorithms. IEEE Transactions
on knowledge and Data Engineering, 17(3):299–310.
Islam, R., Tian, R., Moonsamy, V., and Batten, L. (2012).
A comparison of the classification of disparate mal-
ware collected in different time periods. Journal of
networks, 7(6):946–955.
Kang, P. and Cho, S. (2006). Eus svms: Ensemble of under-
sampled svms for data imbalance problems. In Inter-
national Conference on Neural Information Process-
ing, pages 837–846. Springer.
Khoshgoftaar, T. M., Van Hulse, J., and Napolitano, A.
(2011). Comparing boosting and bagging techniques
with noisy and imbalanced data. IEEE Transactions
on Systems, Man, and Cybernetics-Part A: Systems
and Humans, 41(3):552–568.
Kotsiantis, S. B., Zaharakis, I., and Pintelas, P. (2007). Su-
pervised machine learning: A review of classification
techniques.
Kruczkowski, M. and Szynkiewicz, E. N. (2014). Sup-
port vector machine for malware analysis and classi-
fication. In Proceedings of the 2014 IEEE/WIC/ACM
International Joint Conferences on Web Intelligence
(WI) and Intelligent Agent Technologies (IAT)-Volume
02, pages 415–420. IEEE Computer Society.
Lin, W.-J. and Chen, J. J. (2012). Class-imbalanced classi-
fiers for high-dimensional data. Briefings in bioinfor-
matics, page bbs006.
Lu, Y.-B., Din, S.-C., Zheng, C.-F., and Gao, B.-J. (2010).
Using multi-feature and classifier ensembles to im-
prove malware detection. Journal of CCIT, 39(2):57–
72.
Maxwell, K. (2012). Mwcrawler. https://github.com/
0day1day/mwcrawler.
Maxwell, K. (2015). Maltrieve. https://github.com/
technoskald/maltrieve.
Miao, Q., Liu, J., Cao, Y., and Song, J. (2015). Malware
detection using bilayer behavior abstraction and im-
proved one-class support vector machines. Interna-
tional Journal of Information Security, pages 1–19.
Microsoft (2015). Microsoft security intelligence re-
port (sir). http://www.microsoft.com/security/sir/
default.aspx.
Moser, A., Kruegel, C., and Kirda, E. (2007). Limits of
static analysis for malware detection. In Computer
security applications conference, 2007. ACSAC 2007.
Twenty-third annual, pages 421–430. IEEE.
Moskovitch, R., Feher, C., and Elovici, Y. (2008). Unknown
malcode detectiona chronological evaluation. In In-
telligence and Security Informatics, 2008. ISI 2008.
IEEE International Conference on, pages 267–268.
IEEE.
Offensivecomputing (2015). Open malware. http://
www.offensivecomputing.net.
Peiravian, N. and Zhu, X. (2013). Machine learning for
android malware detection using permission and api
calls. In 2013 IEEE 25th International Conference
on Tools with Artificial Intelligence, pages 300–305.
IEEE.
Pektas¸, A., Acarman, T., Falcone, Y., and Fernandez, J.-C.
(2015). Runtime-behavior based malware classifica-
tion using online machine learning. In 2015 World
Congress on Internet Security (WorldCIS), pages 166–
171. IEEE.
Pirscoveanu, R. S., Hansen, S. S., Larsen, T. M., Ste-
vanovic, M., Pedersen, J. M., and Czech, A. (2015).
Analysis of malware behavior: Type classification us-
ing machine learning. In Cyber Situational Aware-
ness, Data Analytics and Assessment (CyberSA), 2015
International Conference on, pages 1–7. IEEE.
Salehi, Z., Sami, A., and Ghiasi, M. (2014). Using feature
Towards an Understanding of the Misclassification Rates of Machine Learning-based Malware Detection Systems
111