Guo, P. J. (2012). Software tools to facilitate research pro-
gramming. PhD thesis, Stanford University.
Havens, T. C., Bezdek, J. C., Leckie, C., Ramamohanarao,
K., and Palaniswami, M. (2013). A soft modular-
ity function for detecting fuzzy communities in so-
cial networks. Fuzzy Systems, IEEE Transactions on,
21(6):1170–1175.
Henry, N., Bezerianos, A., and Fekete, J.-D. (2008). Im-
proving the readability of clustered social networks
using node duplication. Visualization and Computer
Graphics, IEEE Transactions on, 14(6):1317–1324.
Henry, N., Fekete, J.-D., and McGuffin, M. J. (2007). Node-
trix: a hybrid visualization of social networks. Visu-
alization and Computer Graphics, IEEE Transactions
on, 13(6):1302–1309.
Huang, J., Sun, H., Han, J., Deng, H., Sun, Y., and Liu,
Y. (2010). Shrink: a structural clustering algorithm
for detecting hierarchical communities in networks.
In Proceedings of the 19th ACM international con-
ference on Information and knowledge management,
pages 219–228. ACM.
Huberman, B. A. and Adamic, L. A. (2004). Information
dynamics in the networked world. In Complex net-
works, pages 371–398. Springer.
Isenberg, P., Heimerl, F., Koch, S., Isenberg, T., Xu, P.,
Stolper, C., Sedlmair, M., Chen, J., M
¨
oller, T., and
Stasko, J. (2015). Visualization publication dataset.
Dataset: http://vispubdata.org/.
Javed, W. and Elmqvist, N. (2012). Exploring the design
space of composite visualization. In Visualization
Symposium (PacificVis), 2012 IEEE Pacific, pages 1–
8. IEEE.
Kivel
¨
a, M., Arenas, A., Barthelemy, M., Gleeson, J. P.,
Moreno, Y., and Porter, M. A. (2014). Multilayer net-
works. Journal of complex networks, 2(3):203–271.
Lancichinetti, A., Fortunato, S., and Kert
´
esz, J. (2009).
Detecting the overlapping and hierarchical commu-
nity structure in complex networks. New Journal of
Physics, 11(3):033015.
Leskovec, J., Lang, K. J., Dasgupta, A., and Mahoney,
M. W. (2009). Community structure in large net-
works: Natural cluster sizes and the absence of large
well-defined clusters. Internet Mathematics, 6(1):29–
123.
Liiv, I. (2010). Seriation and matrix reordering methods:
An historical overview. Statistical analysis and data
mining, 3(2):70–91.
Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., and
Onnela, J.-P. (2010). Community structure in time-
dependent, multiscale, and multiplex networks. sci-
ence, 328(5980):876–878.
Narasimhamurthy, A., Greene, D., Hurley, N., and Cun-
ningham, P. (2010). Partitioning large networks with-
out breaking communities. Knowledge and informa-
tion systems, 25(2):345–369.
Newman, M. E. (2006). Finding community structure in
networks using the eigenvectors of matrices. Physical
review E, 74(3):036104.
Newman, M. E. and Girvan, M. (2004). Finding and eval-
uating community structure in networks. Physical re-
view E, 69(2):026113.
Ng, A. Y., Jordan, M. I., Weiss, Y., et al. (2002). On spectral
clustering: Analysis and an algorithm. Advances in
neural information processing systems, 2:849–856.
Pal, N. R. and Bezdek, J. C. (1995). On cluster validity
for the fuzzy c-means model. Fuzzy Systems, IEEE
Transactions on, 3(3):370–379.
Parveen, S. and Sreevalsan-Nair, J. (2013). Visualization
of small world networks using similarity matrices. In
Big Data Analytics, pages 151–170. Springer.
Perer, A. and Shneiderman, B. (2006). Balancing system-
atic and flexible exploration of social networks. IEEE
Transactions on Visualization and Computer Graph-
ics, 12(5):693–700.
Renoust, B., Melanc¸on, G., and Munzner, T. (2015). De-
tangler: Visual analytics for multiplex networks. In
Computer Graphics Forum, volume 34, pages 321–
330. Wiley Online Library.
Rosen-Zvi, M., Chemudugunta, C., Griffiths, T., Smyth, P.,
and Steyvers, M. (2010). Learning author-topic mod-
els from text corpora. ACM Transactions on Informa-
tion Systems (TOIS), 28(1):4.
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to
the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics,
20:53–65.
Rufiange, S., McGuffin, M. J., and Fuhrman, C. P. (2012).
Treematrix: A hybrid visualization of compound
graphs. In Computer Graphics Forum, volume 31,
pages 89–101. Wiley Online Library.
Shi, L., Cao, N., Liu, S., Qian, W., Tan, L., Wang, G., Sun,
J., and Lin, C.-Y. (2009). Himap: Adaptive visual-
ization of large-scale online social networks. In Visu-
alization Symposium, 2009. PacificVis’ 09. IEEE Pa-
cific, pages 41–48. IEEE.
Strehl, A. and Ghosh, J. (2003). Relationship-based cluster-
ing and visualization for high-dimensional data min-
ing. INFORMS Journal on Computing, 15(2):208–
230.
van den Elzen, S. and van Wijk, J. J. (2014). Multivariate
network exploration and presentation: From detail to
overview via selections and aggregations. Visualiza-
tion and Computer Graphics, IEEE Transactions on,
20(12):2310–2319.
Vehlow, C., Beck, F., and Weiskopf, D. (2015). The state
of the art in visualizing group structures in graphs. In
Eurographics Conference on Visualization (EuroVis)-
STARs, pages 21–40.
Vehlow, C., Reinhardt, T., and Weiskopf, D. (2013). Visu-
alizing fuzzy overlapping communities in networks.
Visualization and Computer Graphics, IEEE Transac-
tions on, 19(12):2486–2495.
Von Luxburg, U. (2007). A tutorial on spectral clustering.
Statistics and computing, 17(4):395–416.
White, S. and Smyth, P. (2005). A spectral clustering ap-
proach to finding communities in graph. In SDM, vol-
ume 5, pages 76–84. SIAM.
Xie, J., Kelley, S., and Szymanski, B. K. (2013). Overlap-
ping community detection in networks: The state-of-
the-art and comparative study. Acm computing surveys
(csur), 45(4):43.
Zhang, S., Wang, R.-S., and Zhang, X.-S. (2007). Identi-
fication of overlapping community structure in com-
plex networks using fuzzy c-means clustering. Phys-
ica A: Statistical Mechanics and its Applications,
374(1):483–490.
NodeTrix-CommunityHierarchy: Techniques for Finding Hierarchical Communities for Visual Analytics of Small-world Networks
151