Alvarez-Garcia, S., Baeza-Yates, R., Brisaboa, N. R.,
Larriba-Pey, J., and Pedreira, O. (2012). Graphgen:
A tool for automatic generation of multipartite graphs
from arbitrary data. In Web Congress (LA-WEB), 2012
Eighth Latin American, pages 87–94. IEEE.
´
Alvarez-Garc
´
ıa, S., Baeza-Yates, R., Brisaboa, N. R.,
Larriba-Pey, J.-L., and Pedreira, O. (2014). Auto-
matic multi-partite graph generation from arbitrary
data. Journal of Systems and Software, 94:72–86.
Andrienko, G. and Andrienko, N. (2007). Coordinated
multiple views: a critical view. In Coordinated and
Multiple Views in Exploratory Visualization, 2007.
CMV’07. Fifth International Conference on, pages
72–74. IEEE.
Bach, B., Spritzer, A., Lutton, E., and Fekete, J.-D. (2013).
Interactive random graph generation with evolution-
ary algorithms. In Graph Drawing, pages 541–552.
Springer.
Baeza-Yates, R., Brisaboa, N., and Larriba-Pey, J. (2010). A
model for automatic generation of multi-partite graphs
from arbitrary data. In Web-Age Information Manage-
ment, pages 49–60. Springer.
Barab
´
asi, A.-L. and Albert, R. (1999). Emergence of scal-
ing in random networks. science, 286(5439):509–512.
Baudel, T. (2006). From information visualization to di-
rect manipulation: Extending a generic visualization
framework for the interactive editing of large datasets.
In Proceedings of the 19th Annual ACM Symposium
on User Interface Software and Technology, UIST
’06, pages 67–76, New York, NY, USA. ACM.
Benson, D. (2015). Draw. https://www.draw.io/.
Bremm, S., von Landesberger, T., Heß, M., and Fellner, D.
(2012). Pcdc-on the highway to data-a tool for the
fast generation of large synthetic data sets. In EuroVis
Workshop on Visual Analytics, pages 7–11.
Brinkhoff, T. (2002). A framework for generating network-
based moving objects. GeoInformatica, 6(2):153–
180.
Brinkmann, G. and McKay, B. D. (2007). Fast generation
of planar graphs. MATCH Commun. Math. Comput.
Chem, 58(2):323–357.
Brodkorb, F., Kopp, M., Kuijper, A., and von Landesberger,
T. (2016). A modular rule-based visual interactive cre-
ation of tree-shaped geo-located networks. In 2016
12th International Conference on Signal-image Tech-
nology & Internet-based Systems (sitis), pages 397–
403. IEEE Computer Society Press.
Cascetta, E. and Cantarella, G. E. (1993). Modelling dy-
namics in transportation networks: state of the art and
future developments. Simulation practice and theory,
1(2):65–91.
Chen, G., Esch, G., Wonka, P., M
¨
uller, P., and Zhang, E.
(2008). Interactive procedural street modeling. In
ACM transactions on graphics (TOG), volume 27,
page 103. ACM.
D
´
ıaz, J., Petit, J., and Serna, M. (2002). A survey of graph
layout problems. ACM Comput. Surv., 34(3):313–356.
Eades, P. (1984). A heuristics for graph drawing. Congres-
sus Numerantium, 42:146–160.
Eppstein, D. and Wang, J. (2002). A steady state model for
graph power laws. arXiv preprint cs/0204001.
Erd
¨
os, P. and R
´
enyi, A. (1959). On random graphs, i. Pub-
licationes Mathematicae (Debrecen), 6:290–297.
Frick, R. (2011). Simulation of transportation networks. In
Proceedings of the 2011 Summer Computer Simula-
tion Conference, pages 188–193. Society for Model-
ing & Simulation International.
Gladisch, S., Schumann, H., Ernst, M., F
¨
ullen, G., and
Tominski, C. (2014). Semi-automatic editing of
graphs with customized layouts. In Computer Graph-
ics Forum, volume 33, pages 381–390. Wiley Online
Library.
Griffith, D. A. (2002). A spatial filtering specification for
the auto-poisson model. Statistics & probability let-
ters, 58(3):245–251.
Herman, I., Melancon, G., and Marshall, M. S. (2000).
Graph visualization and navigation in information vi-
sualization: A survey. IEEE Transactions on Visual-
ization and Computer Graphics, 6(1):24–43.
Kleinberg, J. M. (2000). Navigation in a small world. Na-
ture, 406(6798):845–845.
Maciejewski, R., Hafen, R., Rudolph, S., Tebbetts, G.,
Cleveland, W. S., Grannis, S. J., and Ebert, D. S.
(2009). Generating synthetic syndromic-surveillance
data for evaluating visual-analytics techniques. IEEE
Computer Graphics and Applications, 29(3):18–28.
McGuffin, M. J. and Jurisica, I. (2009). Interaction tech-
niques for selecting and manipulating subgraphs in
network visualizations. IEEE Transactions on Visu-
alization and Computer Graphics, 15(6):937–944.
National Council of Teachers of Mathematics (2015). Illu-
minations. http://illuminations.nctm.org.
Okabe, A., Okunuki, K.-i., and Shiode, S. (2006a). Sanet: a
toolbox for spatial analysis on a network. Geographi-
cal Analysis, 38(1):57–66.
Okabe, A., Okunuki, K.-I., and Shiode, S. (2006b). The
sanet toolbox: new methods for network spatial anal-
ysis. Transactions in GIS, 10(4):535–550.
O’Madadhain, J., Fisher, D., White, S., and Boey, Y. (2003).
The jung (java universal network/graph) framework.
University of California, Irvine, California.
Parish, Y. I. and M
¨
uller, P. (2001). Procedural modeling
of cities. In Proceedings of the 28th annual con-
ference on Computer graphics and interactive tech-
niques, pages 301–308. ACM.
Sakshaug, J. W. and Raghunathan, T. E. (2010). Synthetic
data for small area estimation. In Privacy in Statistical
Databases, pages 162–173. Springer.
Sakshaug, J. W. and Raghunathan, T. E. (2014a). Gen-
erating synthetic data to produce public-use micro-
data for small geographic areas based on complex
sample survey data with application to the national
health interview survey. Journal of Applied Statistics,
41(10):2103–2122.
Sakshaug, J. W. and Raghunathan, T. E. (2014b). Non-
parametric generation of synthetic data for small ge-
ographic areas. In Privacy in Statistical Databases,
pages 213–231. Springer.
IVAPP 2017 - International Conference on Information Visualization Theory and Applications
292