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Abstract: Human behavior simulations in multi agent systems often lack data to calibrate and qualify the 
representativeness of the simulated behaviors. In this paper, we will show that massive investigations such as 
time-use surveys allow us to obtain this type of data. At the present time, time-use surveys are mostly used to 
validate the realism of human activity at a macroscopic level (population scale). In this paper, we present a 
new method of human behavior generation that combines the use of time-use surveys to calibrate human 
activities, with a multi agent system enabling simulated behaviors to gain reactivity, autonomy, coordination 
and realism at a microscopic level (individual scale).

1 INTRODUCTION 

During the last decades, computer simulations have 
become indispensable tools in many research areas 
such as energy, meteorology, geography, etc. (Law et 
al., 1991). Yet, how one can calibrate models and 
validate the realism of the produced activities remains 
an open question (Rakha et al., 1996; Caillou and Gil-
Quijano 2012; Lacroix et al., 2013). 

This is particularly true within the context of 
human activities simulation, where one can find an 
abundance of simulators focusing on different 
aspects, such as facial expression realism (Pelachaud, 
2009), crowd movement (Thalmann et al., 2007) or 
the decisional process (Laird, 2012). Each of these 
domains needs the development of adapted validation 
methods. 

Our research framework is human activity 
simulation in order to study residential electricity 
consumption (Amouroux et al., 2013). Many studies 
deal with this type of human activity simulation in the 
world of multi agent systems (MAS). Depending on 
the simulation’s needs, the simulated human activities 
can either be highly scripted (Ulicny and Thalmann, 
2001; Sharma and Otunba, 2012) or result from the 
behavior of more autonomous agents (Rao and 
Georgeff, 1991; Traum et al., 2003; Shendarkar et al., 
2008). Other approaches try to combine the 

advantages of both previous methods (Grosz and 
Kraus, 1996; Tambe, 1997; Hubner and Sichman, 
2007; Lanquepin et al., 2013). 

In all these approaches, the issue arises: how to 
validate the realism of the produced activities? As 
many authors have shown, for example in (Gratch et 
al., 2009; Darty et al., 2014), the notion of "realism" 
can be viewed from several angles, depending on the 
type of simulation: likelihood or frequency of 
individual behavior consistent with each other over 
time allowing to reproduce high-level indicators, 
loyalty to the psychological level of decision making, 
etc. 

One way of measuring the realism of a human 
behavior simulation, is to confront individuals with 
their own activity simulation, following a 
participatory simulation approach (Drogoul et al., 
2003; Haradji et al., 2012). However, this method 
drastically lacks scalability. The amount of time 
needed for the interviews and the case by case basis 
of activity modelling make it impossible to simulate 
a large number of individuals and measure the realism 
of the simulation. 

Is it possible to automate this process? In order to 
do so, one needs data about the activities of a large 
number of individuals, formatted in a model allowing 
to objectively compare them. Yet, this data exists in 
the time-use surveys (TUS)(Stinson, 1999). TUS are 
daily surveys in which respondents must transcribe 
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their day as a series of episodes. These surveys exist 
in many countries and are well standardized. 
Statistical methods in the field of energy simulation 
use these TUS in order to simulate human activity and 
calibrate their models at a macroscopic level. The 
realism of the activity produced is then measured in 
terms of statistical proximity with the actual observed 
behavior. In this article, we propose to use TUS to 
produce realistic behavior following this statistical 
definition. 

We will first present some methods of human 
behavior simulation in the field of multi agent 
systems, as well as statistical methods using TUS in 
the world of energy simulation. We will show how 
ensuring the realism of behavior at a macroscopic 
level is not enough to ensure the validity of individual 
behavior. Moreover, we will argue that combining the 
use of TUS with agent-based modelling improves the 
realism of the simulated individual behaviors. We 
will continue by giving more details about our 
method of human behavior generation, combining a 
MAS model and a TUS-based model. 

2 STATE OF THE ART: HUMAN 
BEHAVIOR SIMULATION 

2.1 In Multi Agent Systems 

In the field of human behavior simulation, the multi 
agent approach offers several modelling methods. 
The choice between these methods depends on the 
goals of the simulation. 

Scripted behaviors planned in advance by the 
modeller can be used, for example, when the expected 
behaviors are well known and sufficiently well 
formatted. Those are typically used in training 
simulations where the purpose is to expose a learner 
to a specific scenario (Sharma and Otunba, 2012), or 
in the case of urban emergency situations (Ulicny and 
Thalmann, 2001). 

In such approaches, one tends to limit the 
behavior autonomy in order to ensure that the 
simulations will be conducted as desired. Conversely, 
it may be useful to model much more autonomous 
behaviors, for example within the context of 
negotiation and team work (Traum et al., 2003). One 
way to do so is the BDI model (Belief-Desire-
Intention) (Rao and Georgeff, 1991), widely used in 
multi agent based simulations (MABS). In this model, 
the agent’s goals and belief are modelled. Thus, its 
behavior is a means used in order to achieve its goals. 
These models are also particularly interesting in 

large-scale simulations (Shendarkar et al., 2008), 
since scripts are difficult to implement in highly 
unpredictable and unstable environments. 

On a wider angle, when one tries to model 
collective behavior, it becomes necessary to use 
prescribed coordination models (Lanquepin et al., 
2013), and to combine them with reasoning 
mechanisms. Several ways to achieve that 
combination exist. For example, (Hubner and 
Sichman, 2007) proposes to build a system of 
organizational constraints that each agent must 
respect. Rather than constrain the behavior of 
autonomous agents, one may seek to equip agents 
with teamwork models to enable them to coordinate 
themselves in an adaptive and flexible way (Tambe, 
1997), or allow them to collectively plan their actions 
(Grosz and Kraus, 1996). 

Our work follows a combined approach with both 
prescribed activity at a global scale and autonomous 
decision making for action selection at a fine-grain 
level. 

2.2 Statistical Methods using Time-Use 
Surveys 

TUS are daily surveys in which respondents must 
transcribe their day as a series of episodes. For 
example in the French TUS used in our research 
(INSEE 2010), respondents had to indicate which 
activity they were currently doing, every 10 minutes 
for the whole day. 

The use of TUS in simulations is restricted to a 
few applications only, including the simulation of 
household energy consumption. These are not as 
widely used as they could be, certainly due to the lack 
of visibility of these studies outside the world of 
statistics. Moreover, if TUS are so attractive in the 
world of energy, it is because it has been shown that 
modelling residential energy consumption cannot be 
realistic without any consideration about human 
activity (Hitchcock, 1993). To improve the realism of 
simulated consumption load curves, it is necessary to 
integrate statistically realistic human behavior 
models. 

It is possible to distinguish two main trends in the 
use of TUS to simulate human activity: "top-down" 
approaches and "bottom-up" ones. 

2.2.1 “Top-down” Approaches 

The TUS data can be used to compute a matrix which 
determines, at every time of the day, the probability 
for an individual to switch from an activity to another. 
(Richardson et al., 2010; Widén et al., 2012) use 

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

68



 

Markov chains to model these probabilities for a 
change in activity (a simple presence / absence in the 
housing in the first case, and ten classical activities in 
the second). Similarly, (Chiou, 2009) uses a bootstrap 
method (DeGroot, 1986) to extract the structure of the 
daily behavior in US households. 

These approaches are traditionally limited by 
three factors (Yamaguchi and Shimoda, 2015).  First, 
they need to have the raw data of the TUS, but this 
data isn’t always freely available, depending on the 
laws of the country. Second, they lack accuracy about 
the duration of the different activities. Because these 
approaches focus on transitions between activities, 
the length of each one may be less strictly simulated. 
Finally, the coordination between members of the 
same household is difficult to consider. Indeed, the 
matrix of activity switches is not intended to be 
dependent on the environment (or other agents). 

2.2.2 “Bottom-up” Approaches 

The TUS data can also be used to determine the mean 
duration and distribution of activities during the day. 
With this information, the "bottom-up" approaches 
are able to build schedules iteratively, selecting 
activities one after the other, according to a 
probabilistic distribution. When the new activity is 
selected, the duration is also calculated with the same 
method. Thus, with each new selection of behavior, it 
is possible to take the current situation into account. 

(Tanimoto et al., 2008) show that this approach 
does not require us to have access to the raw data of 
the surveys. The only information needed is: 
• the mean duration (and the associated standard 

deviations) of each activity 
• the percentage of individuals who adopt a 

specific activity at a given time (this percentage 
is called PB) 

The timetables are built iteratively from an initial 
activity by randomly choosing the next activity from 
PB, when the previous activity ends. 

(Wilke et al., 2013) improve the method by 
initially taking into account the periods of presence / 
absence of individuals in their housing. From the 
perspective of the simulation of energy consumption, 
the presence or absence of any individual in the 
habitat fundamentally alters the housing consumption 
profile. Therefore, it seems appropriate to use it as a 
"framework". When a person enters the house, the 
model determines the first activity to be selected as 
well as its duration, and so on until he leaves. Then 
the model directly “jumps” to the next attendance 
period. 

Another method, developed by (Yamaguchi and 
Shimoda, 2015) also uses a strict structure of 
activities, but through behaviors called “routine”. 
Thus, activities such as sleep, work and study, along 
with those related to meals and hygiene are initially 
placed in the timetable. Other behaviors are then 
selected in order to fill gaps in the schedule. The 
originality of the method is to give prior attention to 
activities structuring the schedule. Through these 
routine activities, it is possible to take into account an 
early coordination between members of the same 
household. 

All these statistical methods (top-down and 
bottom-up) aim to replicate realistic human activities 
at a macroscopic level. The simulated activities are 
intended to match with the observed ones only at a 
macroscopic scale. However, this approach does not 
focus on the simulation of realistic individual 
behavior. There is indeed no need to simulate a 
collection of individually realistic behaviors to 
simulate a realistic aggregate behaviour (Thalmann et 
al., 2007). In a way, the simulated individual 
behaviors are not taken into account, but they are only 
"emerging" from the targeted aggregated behaviors. 
This is the reason why we are going to combine the 
high-level TUS-based approach with the MABS. 

2.3 The Interest of Coupling MAS and 
Statistical Methods 

One goal of simulation in energy consumption is to 
provide predictions of the future evolution of load 
curves as new practices appear in the household (e.g. 
new electronic devices or low-consumption 
appliances), or the projection in fictional situations 
(e.g. to assess the impact on the load curve of a major 
event such as a sport competition or weather change). 
Understanding such evolutions requires to generate 
individually realistic behavior over time, able to 
respond and adapt to environmental changes. 
However, statistical methods offer limited 
information on this regard. 

2.3.1 The Limits of Statistical Methods 

Statistical methods are not trying to simulate 
autonomous or even reactive individuals. Statistical 
methods aim at reproducing observed behavior in a 
reference situation (the situation corresponding to the 
TUS). They cannot be applied to unknown situations, 
in which there is no statistical data to match. 
Statistical approaches also do not aim at generating 
individually realistic behavior over time, able to 
respond and adapt to environmental changes. 

Using Time Use Surveys in Multi Agent based Simulations of Human Activity

69



 

Similarly, none of the above statistical methods 
completely deal with the issue of agents’ 
coordination, since it is not essential to ensure the 
realism of the activities at a macroscopic level. In the 
best case, a limited coordination is restricted to a few 
"routine" behaviors (eat, wash, etc.). However, many 
other behaviors require coordination (from a family 
walk to helping a child to get dressed, or even 
choosing the set temperature for the housing). That is 
why, in order to simulate energy consumption as well 
as other applications, having a coordination model 
between simulated individuals is a necessity. 

2.3.2 The Benefits of the Agent Centred 
Approach 

Unlike statistical methods, the agent centred 
approaches use models centred on the simulated 
individuals. Therefore, they aim for a validity at the 
individual level. In MABS, the “emerging behaviors” 
are the collective ones, as they are not explicitly 
described in the model, but arise from interactions 
between individual agents (Drogoul and Ferber, 
1992). 

In our work, we are interested in realism at a 
macroscopic level (population scale) and we need the 
TUS data to calibrate the simulated activities. 
However, we are also interested in validity at a 
microscopic level (individual scale) for prediction 
and simulation of fictional situations. We want to be 
able to simulate reactive, autonomous and coopera-
tive behaviors over time. That is why we developed 
another method that combines the advantages of both 
statistical and agent-based approaches. Our method is 
in this sense a “mixed” MAS method, using reactive 
and autonomous agents, whose behavior is calibrated 
from statistical models derived from TUS. 

3 OUR PROPOSITION 

3.1 General Principle 

This section presents our model of human behavior 
generation. It is based on the combination of a 
bottom-up approach to TUS with an existing and 
already validated agent model: SMACH. We will 
first present our agent model, then the TUS we 
applied to calibrate the model. Afterwards, we will 
discuss two specific issues encountered. First, which 
data to collect in the TUS in order to increase the 
validity of the simulated activities at a microscopic 
scale. Second, how to generate both routine activities 
and activity variability over time. We will then give 

more details about the activity generation algorithm, 
and two possible methodologies in order to validate 
the model. 

3.2 Description of the SMACH Agent 
Model 

SMACH is a simulation platform of human activity 
inside the housings. Its ability to simulate individual 
behaviors similar to real ones has already been 
validated (Amouroux et al., 2014). In this platform, 
each individual is modelled as an agent with goals 
(tasks to perform), knowledge (about the other 
individuals and the environment) and preferences 
(either in terms of comfort or behavior). The agents 
are able to exchange information, coordinate with 
each other to perform specific tasks, plan their days 
(agents can have preferences about when to perform 
a specific task) and their weeks (for example, agents 
can have preferences about the number of times per 
week they wish to use a washing machine). 

All the information needed to launch a simulation 
are called the “scenario”. It contains a description of 
the housing (type, surface, insulation, etc.), weather 
conditions, household type and individuals. In a 
scenario, each individual has a set of tasks to perform. 
These tasks have the following features: 
• Duration. Each task has a minimum and a 

maximum duration. When an agent performs a 
task, its priority increases compared to the other 
ones, in order to prevent constant activity 
swapping. The priority of this task decreases 
after reaching the minimum duration, and it is 
reduced to its minimum value after reaching the 
maximum duration. 

• Rhythm. Each task can be assigned a number of 
repetitions per day or per week. For example: the 
task “sleep” takes place once a day, the task “use 
the washing machine” takes place three times a 
week. 

• Preferential period (PP). Each task may be 
associated with a PP indicating the periods 
during the day (or the week) that are preferred for 
carrying out the task. These periods may be more 
or less strict, that is to say that agents may or may 
not be allowed to achieve the task outside the PP. 
The PP changes the priority of the task, 
positively during the period, and negatively 
outside. 

• Community. This indicates whether this task is 
rather accomplished alone or in groups. 
Example: “having meals” is rather a collective 
task while “brushing teeth” is rather an 
individual one. The realization by an agent B of 
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a collective task also achievable by an agent A, 
gives a bonus to the task’s priority for the agent 
A. 

• Location. Each task is associated with a location, 
inside or outside the housing. 

These features illustrate an important advantage 
of using an agent centred model. It becomes 
unnecessary to generate a scripted schedule minute 
per minute. Preferential periods are sufficient for 
autonomous agents to determine themselves the 
sequencing of their tasks from a list. In addition, the 
agents themselves manage their coordination through 
internal models (in this case, the community feature). 

3.3 The TUS Used 

Our proposal is to use TUS data to set the parameters 
of the MAS simulation (task information for each 
individuals of the household). While our method is 
generic from the perspective of the TUS used (the 
data of any TUS can be used because they all follow 
a common methodology), in was applied to a specific 
TUS: the French 2009-2010 “enquête emploi du 
temps”. 

3.3.1 Description 

This TUS was conducted by the INSEE institute in 
2009-2010 (INSEE 2010). It interrogated 12,000 
households, in which one or two people per 
household filled one or two timetables. A timetable 
consists of 144 time slots of 10 minutes each, from 
21:00 until 23:50 the day after. For each time slot, the 
respondent must indicate what activity he is currently 
performing. In this TUS, more than 18,500 people 
filled around 27,000 timetables. There are 140 
activities identified in the survey. 

This subdivision is too precise for the goals of our 
simulation. Indeed, dealing with very precise 
activities have two negative consequences. First, it 
unnecessarily increases the complexity of the model: 
the activities "reading" and "reading a newspaper" of 
the TUS can be simply modelled as a single activity 
"reading" in the simulation. Second, the more 
different activities are in the survey, the less 
repetitions each of them receives. That leads to under-
represented activities in the survey, and therefore 
insignificant ones (for example activities like "going 
on strike" or "receive medical care from a 
professional at home" are not observed enough in the 
survey to be significant). 

So, we operate a transformation to change the 140 
activities in the TUS to only 30 activities in our model 
(more consistent with our simulation’s goals), such 

as: “to sleep”; “to work”; “hygiene”; “to watch TV”; 
“to wash the laundry”; “to wash the dishes”; “to cook 
lunch”, etc. 

Please note that this transformation of activities 
from the survey is optional, and depends on the 
simulation’s goals. In this case, we are interested in 
household electrical consumption, so the activities are 
mainly inside the housing, and energy driven. 

3.3.2 Individual Types 

In a similar manner as the statistical methods 
presented in the state of the art, we do not try to 
characterize the behavior of individuals in general. 
We define a typology of individuals, which allows us 
to categorize the timetables based on the individual 
characteristics of the person who completed them. 
The more we have access to specific individual 
characteristics, the more we are able to identify a 
typology of specific individuals, and the more the 
schedule will be representative of those types. 
However, the fewer timetables associated with a type 
of individual, the less representative the schedules 
are. The goal is therefore to build the most 
discriminating individual typology possible, while 
avoiding under-represented types. We decided to 
retain the following individual criteria: 
• Sex 
• Age 
• Professional activity (student, working person, 

unemployed, pensioner) 
There are no timetables filled by children under 

10 years. So we decided to build categories with 10 
years age range, starting from 10 years old (up to 60), 
and a last category for those over 60 years. Since all 
combinations of these three criteria (sex, age, 
activity) are not possible (no woman under 20 years 
old is a pensioner, for example), we get 27 different 
types. The smallest group has around 170 timetables, 
while the biggest has over 4,000 ones. 

Please note that the TUS data do not allow us to 
model children under 10 years old. 

3.3.3 Type of Day 

Another consideration needs to be taken into account: 
the type of day. Indeed, for the same individual, the 
activities carried out on weekdays and on Sundays are 
rarely similar. But the type of day is also dependent 
on the individual’s type. The usual Monday activities 
from a working person and from a pensioner could be 
highly heterogeneous. We use the following 
typology: 
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• “working day” or “weekday” (“working day” for 
active and students, and “weekday” for 
unemployed and pensioners) 

• rest day 
Please note that, during the survey, timetables 

filling days have been deliberately divided equally 
between weekdays and weekend. So, we have an 
almost equal distribution for each type of individual, 
between rest days and working day (51.4% of 
weekdays). 

Please also note that this segmentation of 
individuals and types of day depends on the 
simulation’s goals. 

3.4 Data Collected from TUS 

3.4.1 Comparison between Statistical 
Macroscopic Results and Individual 
Schedules 

By studying the TUS’s timetables individually, it 
appears that the statistical results at a macroscopic 
level do not give much information about behaviors 
at an individual level. A simple example: the "sleep" 
activity (see figure 1). 

These curves show the percentage of individuals 
of the four categories "working person", "student", 
"unemployed" and "pensioners" performing the 
"sleep" activity during each step of the day. From 
these curves, one can easily draw firm statistical 
conclusions such as "on average, students get up later 
than pensioners, who are those who go to bed the 
earliest”. These results are very interesting and fairly 
simple to reproduce statistically. 

However, these results conceal a substantial part 
of the individual behavior variability. Even if an 
average of 95% of the pensioners is sleeping between 

2 AM and 4 AM, it is not necessarily the same 95% 
at 2 AM and 4 AM. The study of individual timetables 
shows that activities interruptions are very common. 
Thus, in 10% of the timetables, the sleeping activity 
was reported several times during the day (and up to 
7 times), or no time at all. This example illustrates the 
gap between aggregated and individual behavior. 
Modelling the human sleeping activity as an activity 
carried out only once per night for a duration of 8 
hours may be enough to match the behavior 
distribution at a macroscopic level. But this does not 
model individual realistic sleeping behaviors in the 
sense that in many cases, the simulated behaviors may 
not match the actual observed ones because of their 
number of repetitions per day, or their mean duration 
(people wake up during the night, sleep several times 
a day, etc.). 

Yet the sleeping activity is really easy to model: it 
is an activity adopted every day by almost everyone, 
with a simple schedule. For an activity much more 
difficult to model such as "being on the phone", one 
can easily imagine the difference there may be 
between the aggregate and individual behaviors. 

3.4.2 Enhance the Information Extracted 
from the TUS 

The information typically used by statistical methods 
are the mean durations (and the associated standard 
deviations) of each activity, as well as the percentage 
of individuals who adopt a specific activity at any 
given time. This data is sufficient to generate realistic 
activities at a macroscopic level, but lacks realism at 
a microscopic level, because it does not take into 
account the number of times each activity is actually 
repeated each day. That is why we extract more 
information from the TUS, in order to match more 
precise activity features at a macroscopic level.

 

Figure 1: The "sleep activity" over time. 
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Let ܰ(ܽ,  be the number of repetitions of the (ݐ
activity a, in the timetable t. 

Let ேܲ(ܽ, ݅, ݀)	be the probability distribution of ܰ(ܽ,  for the activity a, for all individuals of type i (ݐ
and for all days of type d. 

For each ேܲ, let ܦ௉(ே) be the collection of couples 
(starting time, finishing time), from every episode of 
the activity in ேܲ. 

Our model requires to extract from the TUS all ேܲ(ܽ, ݅, ݀)	and all ܦ௉(ே) for every activity a, every 
individual type i, and every type of day d. 

Please note that the usual data used by statistical 
methods (mean duration/standard deviation and 
percentage of individuals adopting a specific activity 
at a given time step) are included in this data. 

If this new information is taken into account 
during the process of macroscopic matching between 
observed activities and simulated ones, we believe 
that the simulated individual activities are much 
closer to the observed ones, and thus more realistic. 
That is why we will build in our agent model the 
parameters for task description based on this 
information. However we must also deal with activity 
variability over time. 

3.5 Activity Variability over Time 

3.5.1 The Absence of Information on the 
Variability of Activity in the TUS 

Another difficulty is the absence in the TUS of 
information about the variability of activity over time. 
For the same individual, no more than two days of 
their life are given, and these days are never 
consecutive (usually a weekday and weekend day). 
From one or two timetables of an individual, it is 
impossible to know if the times, durations and 
frequencies indicated for each activities are rather 
usual or exceptional. 

Example: Let T1 and T2 be two timetables 
collected in the TUS (respectively a Wednesday and 
a Saturday) for an individual A. In T1, only 4 hours of 
sleep are indicated, and 10 hours in T2. What does it 
say about the average sleep durations of A? It is 
impossible to know if these values are representative 
of the mean duration of sleep on weekdays and 
weekend or not. A could be sleeping 4 hours per night 
during week nights, or this Wednesday he might have 
attended a party and slept less than usual. 

This problem does not appear when one attempts 
to generate a schedule for only one day, because in 
this case, it doesn’t matter if the activities observed in 
the TUS are usual or not; one just has to reproduce 
them. But when one wants to generate a schedule for 

weeks or months, one needs to know if the activities 
are usual or not, because only the usual activities 
should be repeated day after day. 

In order to generate individual realistic human 
activity over time, one has to generate routine 
activities which will regularly be the same, but also 
variations around these routines (Feldman and 
Pentland 2003; Haradji et al. 2012). 

This means that generating the schedule for a 
week with copies of the same day over and over is 
impossible (no activity variability). On the other 
hand, generating the schedule for a week with totally 
different days each day does not bring more 
consistency over time (no routine activity). 

3.5.2 Weekly “Routine” Schedule 

Our proposal to solve this problem is to generate the 
information that is lacking. To do so, we will make 
one strong hypothesis by considering that the most 
atypical behaviors at a macroscopic level (the least 
represented ones in the TUS) are also atypical ones at 
a microscopic level, that is to say that they are only 
special cases, specific exceptions, and cannot be the 
routine behaviors of any individual. That is a simplify 
model of the reality. It is possible that some humans 
exhibit routine behaviors that are atypical: for 
example, some humans do sleep on average 2 hours 
per night. But since these cases are very uncommon, 
we do not take them into account. 

Weekly “routine” schedules will be based only on 
regular behaviors. All the other behaviors (unusual 
ones) found in the TUS will allow us to feed the 
variability around routine behaviors. 

For each simulated individual we will create a 
weekly routine schedule based on all regular 
behaviors on the timetables corresponding to his type. 
The unusual behaviors of these timetables will 
indicate how the behavior of the agent will change 
around that routine. 

In this way, the mean duration and standard 
deviation of each activity are kept realistic at a 
macroscopic scale, but the individual behavior gains 
consistency over time. 

3.6 Details of the Algorithm 

We will now present the algorithm we use to generate 
schedules. Please note that this algorithm is generic to 
the extent that it works regardless of the typology of 
individuals, the days and activities or the TUS 
plugged in. The individual timetables are not required 
as long as the data presented in the section 3.4.2 are 
available. 
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Table 1: Table presenting all notations of the algorithm. ܰ(ܽ,  number of repetitions of the activity (ݐ
a, in the timetable t ேܲ(ܽ, ݅, ݀) probabilistic distribution of N(a,t) 

for all individuals of type i and for 
all days of type d ܦ௉(ே) all couples (starting time, finishing 

time), from every episode in ேܲ(ܽ, ݅, ݀) 
mean(ܦ௉(ே)) mean duration of the episodes from ܦ௉(ே) 
stddev(ܦ௉(ே)) standard deviation of the episodes 

from ܦ௉(ே) 
PP(ܦ௉(ே)) preferential period of the activity in ܦ௉(ே) 
DRS(ind,d) daily routine schedule of the 

simulated individual ind, for the 
days of type d 

WRS(ind) weekly routine schedule of the 
simulated individual ind 

DS(ind,rd) actual daily schedules for the 
individual ind, for the real day rd 

3.6.1 Step 1: Calculation of Temporality 
Information 

Let A be the set of activities of the simulation 
Let I be the set of individual types 
Let D be the set of types of day 
For every activity a in A, for every type of individual 
i in I, and for every type of day d in D, we first 
compute ேܲ(ܽ, ݅, ݀) and ܦ௉(ே) (see section 3.4.2 for 
definitions). 
For every ܦ௉(ே), we compute mean(ܦ௉(ே)) and 
stddev(ܦ௉(ே)), the mean duration and standard 
deviation of episodes from ܦ௉(ே). 
We then build PP(ܦ௉(ே)), the preferential period of 
the activity. The PP are calculated such as 75% of the 
episodes from ܦ௉(ே) start after the starting time of PP, 
and 75% of the episodes from ܦ௉(ே) finish before the 
finishing time of PP. 

3.6.2 Step 2: Determination of Daily Routine 
Schedule 

Let DRS(ind,d)={task1, task2, …, taskm} be the daily 
routine schedule of the simulated individual ind 
(which individual type is i), for the type of day d. This 
schedule is a collection of tasks (see section 3.2 for a 
definition of task in the model) 
For every activity a in A, let x(a) be a possible number 
of repetition of a, chosen randomly in ேܲ(ܽ, ݅, ݀). 
We then create a task ta, corresponding to the activity 
a, with the following properties: 

• Minimum duration = mean(ܦ௉(ே)) -
stddev(ܦ௉(ே)) 

• Maximum duration = mean(ܦ௉(ே)) + 
stddev(ܦ௉(ே)) 

• Preferential period: PP(ܦ௉(ே)) 
We add x(a) repetitions of the task ta in DRS(ind,d)  

3.6.3 Step 3: Determination of Weekly 
Routine Schedule 

Let rd be any real day of the week (Monday, 
Tuesday… Sunday). 
Let WRS(ind)={DRS(ind,d1) , … , DRS(ind,dk) ,… , 
DRS(ind,dn)} be the weekly routine schedule of the 
simulated individual ind (which individual type is i), 
with d1, …, dk, … dn the n different type of day in D. 
For every type of individual i in I, let Pdj(i,rd), (with 
jϵ[0,n]) be the probabilities that the day rd be of type 
dj for an individual of type i. 
For every day of the week, we add in WRS(ind) the 
corresponding DRS(ind,d) thanks to a random draw 
in Pdj(i, rd), (with jϵ[0,n]). 

3.6.4 Step 4: Determination of the Simulated 
Schedules 

Let ind be a simulated individual. 
Let DS(ind,rd)={task1, … taskm} be the actual daily 
schedules for the individual ind, for the real day rd. 
DS(ind,rd) is build as follows: 
for every type of day d, we determine the daily routine 
schedules DRS(ind,d) (step 2) and the weekly routine 
schedule WRS(ind) (step 3). 
Then, for every new simulated day sd (which type of 
day is d), for every task ta in DRS(ind,d), we add ta’, 
a copy of ta, in DS(ind,rd). But there is a probability 
of 0.3 that we turn ta’ into an “unusual task” (see 
section 3.5.2). This corresponds to the fact that, 
statistically, only 68.2% of the episodes have a 
duration situated in the interval [mean(ܦ௉(ே)) - 
stddev(ܦ௉(ே)) ; mean(ܦ௉(ே)) + stddev(ܦ௉(ே))]. 
However, at this point of the algorithm, every episode 
is inside this interval. So, in order to keep a realistic 
variability of these durations at a macroscopic level, 
we have to “push” 1/3 of these durations outside the 
interval. 
Turing ta’ into an “unusual” task is done by the 
following operation: 
With a probability 0.3 (probability of unusual task), 
select randomly one of the two possible alterations 
(this choice is equiprobable): 

a) Set minimum duration = mean(ܦ௉(ே)) -
2*stddev(ܦ௉(ே)) 
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Set maximum duration = mean(ܦ௉(ே)) -
stddev(ܦ௉(ே)) 

b) Set minimum duration = mean(ܦ௉(ே)) + 
stddev(ܦ௉(ே)) 
Set maximum duration = mean(ܦ௉(ே)) + 
2*stddev(ܦ௉(ே)) 

Please note that, statistically, around 4.5% of the 
durations are outside the interval [mean(ܦ௉(ே))-
2*stddev(ܦ௉(ே));mean(ܦ௉(ே))+2*stddev(ܦ௉(ே))]. We 
do not deal with them (we consider those tasks as too 
rare). 

3.6.5 Conclusion about the Algorithm 

With this algorithm, the duration and standard 
deviation of the simulated activities at a macroscopic 
level are still respected, but the average number of 
repetitions of each activity is respected too. In 
addition, the simulated individuals exhibit both 
routine activities and variation around them. We 
believe that these features increase realism in the 
individual schedules generated. 

In this algorithm, we suppose that the tasks are 
independent from each other, but it is possible to deal 
with such dependencies during the random draw in ேܲ during step 2 (for example to take into account that 
if an individual is cooking during the day, he is more 
likely to eat at some point after that). 

The tasks created by this algorithm are not 
complete at this point. They lack community and 
location information. This information cannot be 
found in the TUS, it has to be added by the modeller. 
So, for each activity of the simulation, the modeller 
has to explicitly fill up the features “community” and 
“location” (see section 3.2). 

With this additional information, the tasks created 
in this algorithm are complete (in the sense of our 
simulator). The actual daily schedule DS(ind,rd) 
created for every simulated individual ind and for 
every day rd can be directly sent to the agents in the 
simulator. Every day of the simulation, the agents will 
receive their tasks, and they will decide how they are 
going to perform them. 

3.7 Validation Methodology 

This model has been implemented and is currently 
being tested with the data from the INSEE TUS. The 
next step is to validate the result of the produced 
simulation. 

Several methods are possible. First, we would like 
to verify that the autonomy of the agents does not 
harm the macroscopic realism of the simulated 

behaviors. Indeed, as we generate non-scripted 
schedules, the agents have some degree of freedom to 
reorganize them. That can be checked by launching a 
large number of simulations and generate the TUS 
timetables associated with each day of simulation. 
Then we can compute the statistical results at a 
macroscopic level from these new timetables as if 
they were real ones, and finally compare them with 
the real ones. This method is easy to perform (it only 
relies on computation time), but like the validation of 
the statistical methods, only verifies the realism of the 
activities at a macroscopic scale. 

A second verification is to compare real and 
simulated activities at a microscopic level. However, 
we cannot manually verify a large number of 
produced behaviors. Our proposed approach is to 
generate “new TUS timetables” as in the previous 
method and to perform a classification process with 
the real TUS timetables and the simulated ones. 
Based on previous work (Darty et al. 2014), we claim 
that if the obtained clusters are mixed (they contain 
both real timetables and simulated ones), it means that 
the simulated activities are indistinguishable from 
real ones, based on the considered variables. 
However, we still need to define the relevant 
classification variables. That will allow us to state that 
the individual simulated activities are “realistic”. 

4 CONCLUSION AND 
PERSPECTIVES 

We have presented a multi agent model using 
concepts coming from statistical methods of human 
activity generation. In particular, thanks to data 
collected in TUS, we are able to calibrate the 
simulated behaviors. This model has two major 
advantages. First, compared to traditional statistical 
methods, it allows the generation of more realistic 
individual behaviors, while keeping the same quality 
of realism at a macroscopic level. Second, compared 
to more traditional MABS, the use of TUS allows the 
objective measurement of the realism of the simulated 
activities. In addition, the international and generic 
nature of TUS makes them usable in various 
application domains. 

The next step of our work is to implement this 
model on data collected within our project to study 
the realism of the behavior simulated. 

This work leads to many perspectives. In the field 
of energy simulation, adding reactivity and autonomy 
to the simulated individuals allows the prediction of 
long-term consumption, and the ability to take into 
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account the impact of new types of consumption 
(generalization of electric cars, self-production and 
self-consumption of electricity, etc.). One also 
becomes able to deal with major events (climatic, 
social, etc.). Another research track currently 
followed by our team is to study the impact of new 
electrical tariff on consumption. How do consumers 
react to a change in the price of electricity? 

In the area of MABS, the widespread use of TUS 
could bring a better understanding of the relationship 
between the notions of realism and credibility (some 
of the actual behaviors observed in the TUS seem 
highly unlikely or even incomprehensible). 
Furthermore, the worldwide nature of TUS can also 
help modellers to introduce, in a consistent and 
measurable way, some lesser explored aspects of 
human activity simulation (such as the individual’s 
culture or other local specificity). 
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