Automatic Polyp Detection from Endoscope Image using Likelihood Map based on Edge Information
Yuji Iwahori, Hiroaki Hagi, Hiroyasu Usami, Robert J. Woodham, Aili Wang, M. K. Bhuyan, Kunio Kasugai
2017
Abstract
An endoscope is a medical instrument that acquires images inside the human body. This paper proposes a new approach for the automatic detection of polyp regions in an endoscope image by generating a likelihood map with both of edge and color information to obtain high accuracy so that probability becomes high at around polyp candidate region. Next, Histograms of Oriented Gradients (HOG) features are extracted from the detected region and random forests are applied for the classification to judge whether the detected region is polyp region or not. It is shown that the proposed approach has high accuracy for the polyp detection and the usefulness is confirmed through the computer experiments with endoscope images.
References
- Alexandre, L., Nobre, N., and Casteleiro, J. (2008). Color and position versus texture features for endoscopic polyp detection. In International Conference on BioMedical Engineering and Informatics (BMEI 2008), Vol.2, pp.38-42.
- Ameling, S., Wirth, S., Paulus, D., Lacey, G., and Vilarino, F. (2009). Texture-based Polyp Detecion in Colonoscopy. In Springer Berlin Heidelberg New York, pp.346-350. Springer.
- Arthur, D. and Vassilvitskii, S. (2007). k-means++: The Advantages of Careful Seeding. In Proceedings of the 18th annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics, pp.1027-1035.
- Bernal, J., Sanchez, F., G.F-Esparrach, Gil, D., Rodriguez, C., and Vilarino, F. (2015). WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. In Computerized Medical Imaging and Graphics, Elsevier, Vol.43, pp.99-111.
- Breiman, L. (2001). Random forests. In Machine Learning, Vol.45, No.1, pp.5-32.
- Hwang, S., Oh, J., Tavanapong, W., Wong, J., and deGroen, P. (2007). Polyp detection in colonoscopy video using elliptical shape feature. In International Conference on Image Processing, Vol.2, pp.465-468. IEEE.
- Iakovidis, D., Maroulis, D., Karkanis, S., and Brokos, A. (2005). A comparative study of texture features for the discrimination of gastric polyps in endoscopic video. In Proceedings of 18th IEEE Symposium on Computer-Based Medical Systems, pp.575-580.
- Iwahori, Y., Shinohara, T., Hattori, A., Woodham, R., Fukui, S., Bhuyan, M., and Kasugai, K. (2013). Automatic Polyp Detection in Endoscope Images Using a Hessian Filter. In Proceedings of MVA 2013, pp. 21-24. IAPR.
- Karkanis, S., Iakovidis, D., Maroulis, D., Karras, D., and Tzivras, M. (2003). Computer-aided tumor detection in endoscopic video using color wavelet features. In IEEE Transactions on Information Technology in Biomedicine, Vol.7, No.3, pp.141-152. IEEE.
- Li, B. and Meng, M. (2011). Comparison of Several Texture Features for Tumor Detection in CE Images. In Journal of Medical Systems, Vol.36, No.4, pp.2463-2469.
- Shen, H. and Cai, Q. (2009). Simple and efficient method for specularity removal in an image. In Applied Optics, Optical Society of America, Vol.48, No.14, pp.2711-2719.
Paper Citation
in Harvard Style
Iwahori Y., Hagi H., Usami H., Woodham R., Wang A., Bhuyan M. and Kasugai K. (2017). Automatic Polyp Detection from Endoscope Image using Likelihood Map based on Edge Information . In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-222-6, pages 402-409. DOI: 10.5220/0006189704020409
in Bibtex Style
@conference{icpram17,
author={Yuji Iwahori and Hiroaki Hagi and Hiroyasu Usami and Robert J. Woodham and Aili Wang and M. K. Bhuyan and Kunio Kasugai},
title={Automatic Polyp Detection from Endoscope Image using Likelihood Map based on Edge Information},
booktitle={Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2017},
pages={402-409},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006189704020409},
isbn={978-989-758-222-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Automatic Polyp Detection from Endoscope Image using Likelihood Map based on Edge Information
SN - 978-989-758-222-6
AU - Iwahori Y.
AU - Hagi H.
AU - Usami H.
AU - Woodham R.
AU - Wang A.
AU - Bhuyan M.
AU - Kasugai K.
PY - 2017
SP - 402
EP - 409
DO - 10.5220/0006189704020409