Cellmer, R., Belej, M., Zrobek, S., and
ˇ
Subic-Kovaˇc, M.
(2014). Urban land value maps a methodological ap-
proach. Geodetski vestnik, 58(3):535–551.
Chen, J.-S., Pan, S., and Ko, C.-H. (2011). A continua-
tion approach for the capacitated multi-facility weber
problem based on nonlinear socp reformulation. Jour-
nal of Global Optimization, 50(4):713–728.
Chen, P.-C., Hansen, P., Jaumard, B., and Tuy, H. (1998).
Solution of the multisource weber and conditional we-
ber problems by d.-c. programming. Operations Re-
search, 46(4):548–562.
Cooper, L. (1964). Heuristic methods fot location-
allocation problems. SIAM Review, 6(1):37–53.
Cooper, L. (1972). The transportation-location problem.
Operations Research, 20(1):94–108.
Dolan, E. D. and Mor´e, J. J. (2002). Benchmarking opti-
mization software with performance profiles. Mathe-
matical programming, 91(2):201–213.
Drezner, Z., Klamroth, K., Sch¨obel, A., and Wesolowsky,
G. O. (2002). 1 the weber problem.
Fern´andez-Avil´es, G., Minguez, R., and Montero, J.-M.
(2012). Geostatistical air pollution indexes in spatial
hedonic models: the case of madrid, spain. Journal of
Real Estate Research.
Hansen, P., Mladenovic, N., and Taillard, E. (1998). Heuris-
tic solution of the multisource weber problem as a
pmedian problem. Operations Research Letters, 22(2-
3):55–62.
Helbich, M., Jochem, A., M¨ucke, W., and H¨ofle, B. (2013).
Boosting the predictive accuracy of urban hedonic
house price models through airborne laser scanning.
Computers, environment and urban systems, 39:81–
92.
Hosseininezhad, S. J., Salhi, S., and Jabalameli, M. S.
(2015). A cross entropy-based heuristic for the capac-
itated multi-source weber problem with facility fixed
cost. Computers & Industrial Engineering, 83:151–
158.
Hu, S., Tong, L., Frazier, A. E., and Liu, Y. (2015). Urban
boundary extraction and sprawl analysis using landsat
images: A case study in wuhan, china. Habitat Inter-
national, 47:183–195.
Kuntz, M. and Helbich, M. (2014). Geostatistical mapping
of real estate prices: an empirical comparison of krig-
ing and cokriging. International Journal of Geograph-
ical Information Science, 28(9):1904–1921.
Larraz, B. and Poblacin, J. (2013). An online real estate
valuation model for control risk taking: A spatial ap-
proach. Investment Analysts Journal, 42(78):83–96.
Liang, H. and Yi, W. (2012). Effect of rent spatial distribu-
tion to urban business district planning. In Advanced
Materials Research, volume 374, pages 2001–2008.
Trans Tech Publ.
Luis, M., Salhi, S., and Nagy, G. (2015). A constructive
method and a guided hybrid grasp for the capacitated
multi-source weber problem in the presence of fixed
cost. Journal of Algorithms & Computational Tech-
nology, 9(2):215–232.
Luo, J. (2004). Modeling urban land values in a gis envi-
ronment. University of Wisconsin. Milwaukee, USA.
Megiddo, N. and Supowit, K. (1984). On the complexity
of some common geometric location problems. SIAM
Journal on Computing, 13(1):182–196.
Michelot, C. and Lefebvre, O. (1987). A primal-dual algo-
rithm for the fermat-weber problem involving mixed
gauges. Mathematical Programming, 39(3):319–335.
Mladenovic, N., Brimberg, J., Hansen, P., and Moreno-
Perez, J. A. (2007). The p-median problem: A sur-
vey of metaheuristic approaches. European Journal
of Operational Research, 179(3):927–939.
Oliver, M. A. and Webster, R. (1990). Kriging: a method
of interpolation for geographical information systems.
International Journal of Geographical Information
System, 4(3):313–332.
Planchart, A. and Hurter, A. P. J. (1975). An effi-
cient algorithm for the solution of the weber prob-
lem with mixed norms. SIAM Journal on Control,
13(3):650665.
Plastria, F. (1987). Solving general continuous single fa-
cility location problems by cutting planes. European
Journal of Operational Research, 29(1):98–110.
Sherali, H. D., Al-Loughani, I., and Subramanian, S.
(2002). Global optimization procedures for the
capacitated euclidean and l
p
distance multifacility
location-allocation problems. Operations Research,
50(3):433–448.
Vielma, J. P., Ahmed, S., and Nemhauser, G. (2010).
Mixed-integer models for nonseparable piecewise lin-
ear optimization: Unifying framework and extensions.
Operations Research, 58(2):303–315.
Weber, A. and Friedrich, C. J. (1929). Alfred Weber’s The-
ory of the Location of Industries. The University of
Chicago Press, Chicago, Illinois.
Weiszfeld, E. and Plastria, F. (2009). On the point for which
the sum of the distances to n given points is minimum.
Annals of Operations Research, 167(1):4–41.
Xue, G. and Ye, Y. (1997). An efficient algorithm for min-
imizing a sum of euclidean norms with applications.
SIAM Journal on Optimization, 7(4):1017–1036.