dynamically changing environments can be studied
through modelling and simulation of cognitive agents
in such environments. The presented work
contributes to this area of research and investigates
how various model parameters affects the agents’
performance.
ACKNOWLEDGEMENTS
The authors acknowledge helpful discussions with
Bruno Di Stefano, Leslie Ly and Hao Wu. A.T.L.
acknowledges partial financial support from NSERC
of Canada.
REFERENCES
Russell, S., Norvig, P., 2014. Artificial Intelligence, A
Modern Approach, Pearson Education Limited.
Poole, D.L., MacKworth, A.K., 2010. Artificial
Intelligence, Foundations of Computational Agents,
Cambridge University Press, Cambridge, US.
Ferber, J., 1999. Multi-Agent Systems, An Introduction to
Distributed Artificial Intelligence, Addison-Wesley,
Longman.
Uhrmacher, A.M., Weyns, D., 2009. Multi-Agent Systems
Simulation and Applications, CRC Press, Taylor &
Francis Group, Boca Raton, Fl.
Nehavin, Ch. L., Dautenhahn, K., 2007. Imitation and
Social Learning in Robots, Humans and Animals”,
Cambridge University Press, Cambridge, UK.
Bandura, A., 1977. Social Learning Theory, Prentice Hall,
Englewood Cliffs, NJ.
Bandura, A., Ross, D., Ross, S.A., 1961. Transmission of
aggression through the imitation of aggressive models,
Journal of Abnormal and Social Psychology, 63, pp.
575-582.
Hoppitt, W., Laland, K.N., 2013. Social Learning, An
Introduction to Mechanisms, Methods, and Models,
Princeton University Press, Princeton.
Montes de Oca, M.A., Stutzle, T., 2008. Towards
incremental social learning in optimization and
multiagent systems, Proceedings of GECCO’08, The
10
th
Annual Conference Comparison on Genetic and
Evolutionary Computation, pp. 1939-1944.
Gong, Y.J., Zhang, J., Li, Y., 2014. From the social learning
theory to a social learning algorithm for global
optimization, Proceedings of 2014 IEEE International
Conference on Systems, Man and Cybernetics (SMC),
San Diego, CA, pp. 222 – 227.
Cheng, R., Jin, Y. 2015. A social learning particle swarm
optimization algorithm for scalable optimization”,
Information Sciences, Vol. 291, pp. 43-60.
Liu, Z.-Z, Chu, D.-H., Song, Ch., Xue, X., Lu, B.-Y., 2016.
Social learning optimization (SLO) algorithm paradigm
and its application in QoS-aware cloud service
composition, Information Sciences, Vol. 326, pp. 315-
333.
Lawniczak, A.T., Ernst, J.B., Di Stefano, B.N., 2012.
Creature Learning to Cross A CA Simulated Road”, in:
G.C. Sirakoulis, S. Bandini (Eds.) Proc. of ACRI 2012,
Springer-Verlag LNCS, Vol.7495, 2012, pp. 425-433.
Lawniczak, A.T., Ernst, J.B., Di Stefano, B.N., 2013.
Simulated Naïve Creature Crossing a Highway,
Proceedia Computer Science 18, 2013, pp. 2611-2614.
Lawniczak, A.T., Di Stefano, B.N., Ernst, J.B., 2014.
Software Implementation of Population of Cognitive
Agents Learning to Cross a Highway, J. Was, G.C.
Sirakoulis, S. Bandini (Eds.) Proc. of ACRI 2014,
Springer-Verlag LNCS, Vol. 8751, pp. 688-697.
Nagel, K., Schreckenberg, M., 1992. A cellular automaton
model for freeway traffic”, J. Physique I, 2, pp. 2221 –
2229.
Lawniczak, A.T., Di Stefano, B.N., 2008. Development of
CA model of highway traffic”, in Adamatzky, A.,
Alonso-Sanz, R., Lawniczak, A., Martinez, G. J.,
Morita, K., Worsch, T., eds., Automata-2008, Theory
and Applications of Cellular Automata, Luniver Press,
U.K.
Lawniczak, A.T., Di Stefano, B.N., 2010a. Multilane Single
GCA-w Based Expressway Traffic Model, in: S.
Bandini et al. (Eds.): Prof. of ACRI 2010, Springer-
Verlag LNCS Vol. 6350, pp. 600-612.
Lawniczak, A.T., Di Stefano, B.N., 2010b. Digital
Laboratory of Agent-Based Highway Traffic Model,
Acta Physica Polonica B Proc. Supplement, Vol. 3, No.
2, pp. 479-493.
Lawniczak, A.T., Di Stefano, B.N., Ernst, J.B., 2015.
Stochastic Model of Cognitive Agents Learning to
Cross a Highway. In A. Steland, E. Rafajlowicz, K.
Szajnowski (Ed.) The 12
th
Workshop on Stochastic
Models, Statistics and their Applications, Springer
Proceedings in Mathematics and Statistics, Vol.122, pp.
319-326.
Lawniczak, A.T., Di Stefano, B. N., Ly, L., Xie, S., 2016.
Performance of Population of Naïve Creatures with
Fear and Desire Capable of Observational Social
Learning. Acta Physica Polonica Series B, Proceedings
Supplement, 9 (1), pp. 95-107.
Lawniczak, A.T., Ly, L., Yu, F., Xie, S., 2016. Effects of
Model Parameter Interactions on Naïve Creatures’
Success of Learning to Cross a Highway, The 2016
IEEE Congress on Evolutionary Computation (IEEE
CEC 2016) at IEEE WCCI 2016, 10 pages.
Dean, A., Voss, D., 1999. Design and Analysis of
Experiments, Springer Science+Bussines Media, Inc.