Jones, E., Oliphant, T., Peterson, P., et al. (2001).
SciPy: Open source scientific tools for Python.
https://www.scipy.org/.
Kingma, D. and Ba, J. (2014). Auto-Encoding Variational
Bayes. In 2nd International Conference on Learning
Representations (ICLR2014).
Kingma, D. and Ba, J. (2015). Adam: A method for
stochastic optimization. In 3rd International Confer-
ence on Learning Representations (ICLR2015).
L
¨
angkvist, M., Karlsson, L., and Loutfi, A. (2014). A re-
view of unsupervised feature learning and deep learn-
ing for time-series modeling. Pattern Recognition Let-
ters, 42(1):11–24.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. Nature, 521(7553):436–444.
Lourenc¸o, A., Silva, H., Carreiras, C., and Fred, A. (2013).
Outlier detection in non-intrusive ecg biometric sys-
tem. In AIMI International Conf. on Image Analysis
and Recognition - ICIAR, pages 43–52.
Marques, F., Carreiras, C., Lourenc¸o, A., Fred, A., and Fer-
reira, R. (2015). Ecg biometrics using a dissimilarity
space representation. In Proceedings of the Interna-
tional Conference on Bio-inspired Systems and Signal
Processing (BIOSTEC 2015), pages 350–359.
Martinez, H. P., Bengio, Y., and Yannakakis, G. (2013).
Learning Deep Physiological Models of Affect. IEEE
Computational Intelligence Magazine, Special Issue
on Computational Intelligence and Affective Comput-
ing, 8(2):20–33.
McSharry, P. E., Clifford, G. D., Tarassenko, L., and Smith,
L. A. (2003). A dynamical model for generating syn-
thetic electrocardiogram signals. IEEE Transactions
on Biomedical Engineering, 50(3):289–294.
Odinaka, I., Lai, P.-H., Kaplan, A. D., O’Sullivan, J. A.,
Sirevaag, E. J., and Rohrbaugh, J. W. (2012). ECG
Biometric Recognition: A Comparative Analysis.
IEEE Transactions on Information Forensics and Se-
curity, 7(6):1812–1824.
Page, A., Kulkarni, A., and Mohsenin, T. (2015). Utilizing
deep neural nets for an embedded ECG-based biomet-
ric authentication system. IEEE Biomedical Circuits
and Systems Conference: Engineering for Healthy
Minds and Able Bodies, BioCAS 2015 - Proceedings,
pages 0–3.
Rahhal, M. M. A., Bazi, Y., Alhichri, H., Alajlan, N., Mel-
gani, F., and Yager, R. R. (2016). Deep learning ap-
proach for active classification of electrocardiogram
signals. Information Sciences, 345:340–354.
Rattani, A., Roli, F., and Granger, E., editors (2015). Adap-
tive Biometric Systems. Advances in Computer Vision
and Pattern Recognition. Springer International Pub-
lishing.
Roli, F., Didaci, L., and Marcialis, G. L. (2008). Adaptive
Biometric Systems That Can Improve with Use. In
Ratha, N. K. and Govindaraju, V., editors, Advances in
Biometrics: Sensors, Algorithms and Systems, pages
447–471. Springer London.
Sameni, R., Shamsollahi, M. B., Jutten, C., and Clifford,
G. D. (2007). A nonlinear Bayesian filtering frame-
work for ECG denoising. IEEE Transactions on
Biomedical Engineering, 54(12):2172–2185.
Shen, T. W., Tompkins, W. J., and Hu, Y. H. (2002). One-
lead ecg for identity verification. In Engineering in
Medicine and Biology, 2002. 24th Annual Conference
and the Annual Fall Meeting of the Biomedical Engi-
neering Society EMBS/BMES Conference, 2002. Pro-
ceedings of the Second Joint, volume 1, pages 62–63
vol.1.
Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever,
I., and Salakhutdinov, R. (2014). Dropout : A Sim-
ple Way to Prevent Neural Networks from Overfit-
ting. Journal of Machine Learning Research (JMLR),
15:1929–1958.
Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015).
Training very deep networks. In Advances in Neu-
ral Information Processing Systems 28 (Proceedings
of NIPS), volume 28, pages 2377–2385.
Theano Development Team (2016). Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints, abs/1605.02688.
Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-
A. (2008). Extracting and composing robust features
with denoising autoencoders. In Proceedings of the
25th International Conference on Machine Learning
(ICML-08).
Wan, Y. and Yao, J. (2008). A Neural Network to Identify
Human Subjects with Electrocardiogram Signals. In
Proceedings of the world congress on engineering and
computer science.
Xiong, P., Wang, H., Liu, M., and Liu, X. (2015). De-
noising Autoencoder for Eletrocardiogram Signal En-
hancement. Journal of Medical Imaging and Health
Informatics, 5(8):1804–1810.
Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014).
How transferable are features in deep neural net-
works? Advances in Neural Information Processing
Systems 27 (Proceedings of NIPS), 27:1–9.
ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods
470