REFERENCES
Ausati, S., Amanollahi, J., 2016. Assessing the accuracy of
ANFIS, EEMD-GRNN, PCR, and MLR models in
predicting PM
2.5
. Atmospheric Environment, 142, 465-
474.
Bae, J. K., Kim, J., 2011. Combining models from neural
networks and inductive learning algorithms, Expert
Systems with Applications, 38, 4839-4850.
Breiman, L., Friedman, J. H., Olsen, R. A., Stone C. J.,
1984. Classification and Regression Trees, Wadsworth.
Belmont, California.
Carbajal-Hernández, J. J., Sánchez-Fernández, L. P.,
Carrasco-Ochoa, J. A., Martínez-Trinidad, J.F., 2012.
Assessment and prediction of air quality using fuzzy
logic and autoregressive models. Atmospheric
Environment, 60, 37-50.
Domańska, D., Wojtylak, M., 2012. Application of fuzzy
time series models for forecasting pollution
concentrations. Expert Systems with Applications, 39,
7673-7679.
Elangasinghe, M. A., Singhal, N., Dirks, K. N., Salmond, J.
A., Samarasinghe, S, 2014. Complex time series
analysis of PM
10
and PM
2.5
for a coastal site using
neural network modelling and k-means clustering.
Atmospheric Environment, 94, 106-116.
Hajek, P., Olej, V., 2015. Predicting common air quality
index – The case of Czech Microregions. Aerosol and
Air Quality Research, 15, 544-555.
Loya, N., Pineda, I.O., Pinto, D., Gómez-Adorno, H.,
Alemán, Y., 2013. Forecast of Air Quality Based on
Ozone by Decision Trees and Neural Networks.
Advances in Artificial Intelligence, LNCS vol. 7629,
Springer, 97-106.
Mekanik, F., Imteaz, M. A., Talei, A., 2015. Seasonal
rainfall forecasting by adaptive network-based fuzzy
inference system (ANFIS) using large scale climate
signals. Climate Dynamics, 46 (9), 3097-3111.
Mihalache, S. F., Popescu, M., Oprea, M., 2015. Particulate
matter prediction using ANFIS modelling techniques.
Proceedings of the 19
th
International Conference on
System Theory, Control and Computing, ICSTCC 2015,
895-900.
Mishra, D., Goyal, P., Upadhyay, A., 2015. Artificial
intelligence based approach to forecast PM
2.5
during
haze episodes: A case study of Delhi, India.
Atmospheric Environment, 102, 239-248.
Ong, B. T., Sugiura, K., Zettsu, K., 2016. Dynamically pre-
trained deep recurrent neural networks using
environmental monitoring data for predicting PM
2.5
.
Neural Computing & Applications, 27, 1553-1566.
Oprea, M., Mihalache, S. F., Popescu, M., 2016a. A
comparative study of computational intelligence
techniques applied to PM
2.5
air pollution forecasting.
Proceedings of the 6
th
International Conference on
Computers Communications and Control, ICCCC
2016, 103-108.
Oprea, M., Dragomir, E. G., Popescu, M., Mihalache, S.
M., 2016b. Particulate Matter Air Pollutants
Forecasting Using Inductive Learning Approach. REV.
CHIM. (Bucharest), 67 (10), 2075-2081.
Osrodka, L., Wojtylak, M., Krajny, E., Dunal, R.,
Klejnowski, 2005. Application data mining for
forecasting of high-level air pollution in urban-
industrial area in southern Poland. Proceedings of the
10
th
International Conference on Harmonisation within
Atmospheric Dispersion Modelling for Regulatory
Purposes, 664-668.
Palit, A. K., Popovic, D., 2005. Computational intelligence
in time series forecasting. Theory and Engineering
Applications, Springer-Verlag. London
Perez, P., Salini, G., 2008. PM
2.5
forecasting in a large city:
Comparison of three methods. Atmospheric
Environment, 42, 8219-8224.
Polat, K., Durduran, S.S., 2012. Usage of output-dependent
data scaling in modeling and prediction of air pollution
daily concentration values (PM
10
) in the city of Konya.
Neural Computing & Applications, 21, 2153-2162.
Prasad, K., Gorai, A.K., Goyal, P., 2016. Development of
ANFIS models for air quality forecasting and input
optimization for reducing the computational cost and
time. Atmospheric Environment, 128, 246-262.
Riga, M., Tzima, F. A., Karatzas, K., Mitkas, P. A., 2009.
Development and Evaluation of Data mining Models
for Air Quality Prediction in Athens, Greece. In I. N.
Athanasidis et al., Information Techologies in
Environmental Engineering, Environmental Science
and Engineering, Springer-Verlag, 331-344.
SAS Enterprise Miner 13.2, Reference Help, 2016.
Savić, M., Mihajlović, I., Arsić, M., Živković, Ž., 2014.
Adaptive-network-based fuzzy inference system
(ANFIS) model-based prediction of the surface ozone
concentration. Journal of the Serbian Chemical Society,
79 (10), 1323-1334.
Schubert, S., Lee, T., 2011. Time series data mining with
SAS Enterprise Miner. SAS Global Forum 2011.
Shad, R., Mesgari, M. S., Abkar, A., Shad, A., 2009.
Predicting air pollution using fuzzy genetic linear
membership kriging in GIS. Computers, Environment
and Urban Systems, 33, 472-481.
Shahraiyni, H. T., Sodoudi, S., Kerschbaumer, A., Cubasch,
U., 2015. A new structure identification scheme for
ANFIS and its application for the simulation of virtual
air pollution monitoring stations in urban areas.
Engineering Applications of Artificial Intelligence, 41,
175-182.
Siwek, K., Osowski, S., 2016. Data mining methods for
prediction of air pollution. International Journal of
Applied Mathematics and Computer Science, 26 (2),
467-478.
Siwek, K., Osowski, S., Sowiński, M., 2011. Evolving the
ensemble of predictors model for forecasting the daily
average PM
10
. International Journal of Environment
and Pollution, 46 (3/4), 199-215.
Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C.,
Baklanov, A., 2012. Real-time air quality forecasting,
part I: History, techniques, and current status.
Atmospheric Environment, 60, 632-655.