related to therapy-induced improvement of movement
after stroke. Neuroreport, 10(4):807–810.
Liepert, J., Bauder, H., Miltner, W. H. R., Taub, E., and
Weiller, C. (2000). Treatment-induced cortical reorga-
nization after stroke in humans. Stroke, 31(6):1210–
1216.
Llor
´
ens, R., No
´
e, E., Colomer, C., and Alca
˜
niz, M. (2015).
Effectiveness, usability, and cost-benefit of a vir-
tual reality–based telerehabilitation program for bal-
ance recovery after stroke: A randomized controlled
trial. Archives of physical medicine and rehabilita-
tion, 96(3):418–425.
Lum, P. S., Godfrey, S. B., Brokaw, E. B., Holley, R. J., and
Nichols, D. (2012). Robotic approaches for rehabili-
tation of hand function after stroke. American Journal
of Physical Medicine & Rehabilitation, 91(11):S242–
S254.
Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-
Troy, A., and Leonhardt, S. (2014). A survey on
robotic devices for upper limb rehabilitation. J. Neu-
roeng. Rehabil, 11(1):10–1186.
Petracca, A., Carrieri, M., Avola, D., Basso Moro, S.,
Brigadoi, S., Lancia, S., Spezialetti, M., Ferrari, M.,
Quaresima, V., and Placidi, G. (2015). A virtual
ball task driven by forearm movements for neuro-
rehabilitation. In Virtual Rehabilitation Proceed-
ings (ICVR), 2015 International Conference on, pages
162–163.
Placidi, G. (2007). A smart virtual glove for the hand tel-
erehabilitation. Computers in Biology and Medicine,
37(8):1100–1107.
Placidi, G., Avola, D., Ferrari, M., Iacoviello, D., Petracca,
A., Quaresima, V., and Spezialetti, M. (2014). A low-
cost real time virtual system for postural stability as-
sessment at home. Computer methods and programs
in biomedicine, 117(2):322–333.
Placidi, G., Avola, D., Iacoviello, D., and Cinque, L.
(2013). Overall design and implementation of the
virtual glove. Computers in biology and medicine,
43(11):1927–1940.
Placidi, G., Franchi, D., Marsili, L., and Gallo, P. (2007).
Development of an auxiliary system for the execu-
tion of vascular catheter interventions with a reduced
radiological risk; system description and first experi-
mental results. Computer Methods and Programs in
Biomedicine, 88(2):144–151.
Placidi, G., Petracca, A., Pagnani, N., Spezialetti, M., and
Iacoviello, D. (2015). A virtual system for postural
stability assessment based on a tof camera and a mir-
ror. In Proceedings of the 3rd 2015 Workshop on ICTs
for Improving Patients Rehabilitation Research Tech-
niques, pages 77–80.
Polsinelli, M. (2015). Implementation of a virtual glove
for rehabilitation through the use of leap motion con-
trollers. Master’s thesis, University of L’Aquila.
Rus
`
ak, Z., Antonya, C., and Horv
`
ath, I. (2011). Methodol-
ogy for controlling contact forces in interactive grasp-
ing simulation. International Journal of Virtual Real-
ity, 10(2):1.
Sabata, B. and Aggarwal, J. K. (1991). Estimation of mo-
tion from a pair of range images: A review. CVGIP:
Image Understanding, 54(3):309 – 324.
Weichert, F., Bachmann, D., Rudak, B., and Fisseler, D.
(2013). Analysis of the accuracy and robustness of the
leap motion controller. Sensors, 13(5):6380–6393.
Zimmerli, L., Jacky, M., L
¨
unenburger, L., Riener, R.,
and Bolliger, M. (2013). Increasing patient engage-
ment during virtual reality-based motor rehabilita-
tion. Archives of physical medicine and rehabilitation,
94(9):1737–1746.
ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods
192