A Tracking Approach for Text Line Segmentation in Handwritten Documents

Insaf Setitra, Zineb Hadjadj, Abdelkrim Meziane

2017

Abstract

Tracking of objects in videos consists of giving a label to the same object moving in different frames. This labelling is performed by predicting position of the object given its set of features observed in previous frames. In this work, we apply the same rationale by considering each connected component in the manuscript as a moving object and to track it so that to minimize the distance and angle of of the connected component to its nearest neighbour. The approach was applied to images of ICDAR 2013 handwritten segmentation contest and proved to be robust against text orientation, size and writing script.

References

  1. http://users.iit.demokritos.gr/~nstam/ ICDAR2013HandSegmCont.
  2. http://samosweb.aegean.gr/idips2015/.
  3. Bai, N. N. (2008). Extracting curved text lines using the chain composition and the expanded grouping method.
  4. Bar-Shalom, Y. (1987). Tracking and Data Association. Academic Press Professional, Inc., San Diego, CA, USA.
  5. Boykov, Y. and Huttenlocher, D. P. (2000). Adaptive bayesian recognition in tracking rigid objects. In Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on, volume 2, pages 697- 704 vol.2.
  6. Broida, T. J. and Chellappa, R. (1986). Estimation of object motion parameters from noisy images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(1):90-99.
  7. Bukhari, S. S., Shafait, F., and Breuel, T. M. (2008). Segmentation of curled textlines using active contours. In Document Analysis Systems, 2008. DAS 7808. The Eighth IAPR International Workshop on, pages 270- 277.
  8. Gatos, B., Pratikakis, I., and Ntirogiannis, K. (2007). Segmentation based recovery of arbitrarily warped document images. In Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), volume 2, pages 989-993.
  9. Goto, H. and Aso, H. (1999). Extracting curved text lines using local linearity of the text line. International Journal on Document Analysis and Recognition, 2(2):111-119.
  10. Hönes, F. and Lichter, J. (1994). Layout extraction of mixed mode documents. Machine Vision and Applications, 7(4):237-246.
  11. Li, X., Wang, K., Wang, W., and Li, Y. (2010). A multiple object tracking method using kalman filter. In Information and Automation (ICIA), 2010 IEEE International Conference on, pages 1862-1866.
  12. Li, Y., Zheng, Y., Doermann, D., Jaeger, S., and Li, Y. (2008). Script-independent text line segmentation in freestyle handwritten documents. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(8):1313-1329.
  13. Loo, P. K. and Tan, C. L. (2002). Document Analysis Systems V: 5th International Workshop, DAS 2002 Princeton, NJ, USA, August 19-21, 2002 Proceedings , chapter Word and Sentence Extraction Using Irregular Pyramid, pages 307-318. Springer Berlin Heidelberg, Berlin, Heidelberg.
  14. Louloudis, G., Gatos, B., and Halatsis, C. (2007). Text line detection in unconstrained handwritten documents using a block-based hough transform approach. In Proceedings of the Ninth International Conference on Document Analysis and Recognition - Volume 02, ICDAR 7807, pages 599-603, Washington, DC, USA. IEEE Computer Society.
  15. Mitiche, A. and Aggarwal, J. (2014). Computer Vision Analysis of Image Motion by Variational Methodsn. Springer International Publishing.
  16. Pal, U. and Roy, P. P. (2004). Multioriented and curved text lines extraction from indian documents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(4):1676-1684.
  17. Pal, U., Sinha, S., and Chaudhuri, B. B. (2003). Image Analysis: 13th Scandinavian Conference, SCIA 2003 Halmstad, Sweden, June 29 - July 2, 2003 Proceedings, chapter Multi-oriented English Text Line Identification, pages 1146-1153. Springer Berlin Heidelberg, Berlin, Heidelberg.
  18. Roy, P. P., Pal, U., and Lladós, J. (2012). Text line extraction in graphical documents using background and foreground information. International Journal on Document Analysis and Recognition (IJDAR), 15(3):227- 241.
  19. Stamatopoulos, N., Gatos, B., Louloudis, G., Pal, U., and Alaei, A. (2013). Icdar 2013 handwriting segmentation contest. In 2013 12th International Conference on Document Analysis and Recognition, pages 1402- 1406.
  20. Zheng, B., Xu, X., Dai, Y., and Lu, Y. (2012). Object tracking algorithm based on combination of dynamic template matching and kalman filter. In Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2012 4th International Conference on, volume 2, pages 136-139.
Download


Paper Citation


in Harvard Style

Setitra I., Hadjadj Z. and Meziane A. (2017). A Tracking Approach for Text Line Segmentation in Handwritten Documents . In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-222-6, pages 193-198. DOI: 10.5220/0006199001930198


in Bibtex Style

@conference{icpram17,
author={Insaf Setitra and Zineb Hadjadj and Abdelkrim Meziane},
title={A Tracking Approach for Text Line Segmentation in Handwritten Documents},
booktitle={Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2017},
pages={193-198},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006199001930198},
isbn={978-989-758-222-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - A Tracking Approach for Text Line Segmentation in Handwritten Documents
SN - 978-989-758-222-6
AU - Setitra I.
AU - Hadjadj Z.
AU - Meziane A.
PY - 2017
SP - 193
EP - 198
DO - 10.5220/0006199001930198