Geoffrion, A.M., 1967. Integer Programming by Implicit
Enumeration and Balas’ Method. SIAM Review, 9(2),
pp.178–190. Available at: http://epubs.siam.org/doi/
abs/10.1137/1009031 [Accessed October 16, 2016].
Gökçen, H. & Aǧpak, K., 2006. A goal programming
approach to simple U-line balancing problem.
European Journal of Operational Research, 171(2),
pp.577–585.
Gökċen, H. & Erel, E., 1998. Binary Integer Formulation
for Mixed-Model Assembly Line Balancing Problem.
Computers & Industrial Engineering, 34(2), pp.451–
461. Available at: http://www.sciencedirect.com/
science/article/pii/S0360835297001423.
Guerriero, F. & Miltenburg, J., 2003. The stochastic U-line
balancing problem. Naval Research Logistics, 50(1),
pp.31–57. Available at: http://doi.wiley.com/10.1002
/nav.10043 [Accessed September 22, 2016].
Gutjahr, A.L. & Nemhauser, G.L., 1964. An Algorithm for
the Line Balancing Problem. , (August 2015).
Hamta, N. et al., 2013. A hybrid PSO algorithm for a multi-
objective assembly line balancing problem with
flexible operation times, sequence-dependent setup
times and learning effect. International Journal of
Production Economics, 141(1), pp.99–111.
Hazır, Ö. & Dolgui, A., 2013. Assembly line balancing
under uncertainty: Robust optimization models and
exact solution method. Computers & Industrial
Engineering, 65(2), pp.261–267. Available at:
http://www.sciencedirect.com/science/article/pii/S036
0835213000934.
Kara, Y., 2008. Line balancing and model sequencing to
reduce work overload in mixed-model U-line
production environments. Engineering Optimization,
40(7), pp.669–684. Available at:
http://www.tandfonline.com/doi/abs/10.1080/0305215
0801982509 [Accessed September 26, 2016].
Kara, Y., Paksoy, T. & Chang, C.-T., 2009. Binary fuzzy
goal programming approach to single model straight
and U-shaped assembly line balancing. European
Journal of Operational Research, 195(2), pp.335–347.
Kara, Y. & Tekin, M., 2009. A mixed integer linear
programming formulation for optimal balancing of
mixed-model U-lines. International Journal of
Production Research, 47(15), pp.4201–4233. Available
at: http://www.tandfonline.com/doi/abs/10.1080/
00207540801905486 [Accessed September 26, 2016].
Kazemi, S.M. et al., 2011. A novel two-stage genetic
algorithm for a mixed-model U-line balancing problem
with duplicated tasks. The International Journal of
Advanced Manufacturing Technology, 55(9–12),
pp.1111–1122. Available at: http://link.springer.com/
10.1007/s00170-010-3120-6 [Accessed September 26,
2016].
Kucukkoc, I. et al., 2015. A mathematical model and
artificial bee colony algorithm for the lexicographic
bottleneck mixed-model assembly line balancing
problem. Journal of Intelligent Manufacturing, pp.1–
13. Available at: http://link.springer.com/10.1007/
s10845-015-1150-5 [Accessed October 24, 2016].
Kucukkoc, I. & Zhang, D.Z., 2014. Mathematical model
and agent based solution approach for the simultaneous
balancing and sequencing of mixed-model parallel two-
sided assembly lines. International Journal of
Production Economics, 158, pp.314–333.
Miltenburg, G.J. & Wijngaard, J., 1994. The U-line Line
Balancing Problem. Management Science, 40(10),
pp.1378–1388. Available at:
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.4
0.10.1378 [Accessed September 21, 2016].
Miltenburg, J., 2002. Balancing and Scheduling Mixed-
Model U-Shaped Production Lines. International
Journal of Flexible Manufacturing Systems, 14(2),
pp.119–151. Available at: http://link.springer.com/
10.1023/A:1014434117888 [Accessed September 26,
2016].
Moodie, C., 1964. A Heuristic Method of Assembly Line
Balancing for Assumptions of Constantor Variable
Work Element Times. Available at:
http://docs.lib.purdue.edu/dissertations/AAI6408691/
[Accessed September 23, 2016].
Mosadegh, H., Zandieh, M. & Ghomi, S.M.T.F., 2012.
Simultaneous solving of balancing and sequencing
problems with station-dependent assembly times for
mixed-model assembly lines. Applied Soft Computing,
12(4), pp.1359–1370.
Nakade, K., Ohno, K. & George Shanthikumar, J., 1997.
Bounds and approximations for cycle times of a U-
shaped production line. Operations Research Letters,
21(4), pp.191–200.
Özcan, U., 2010. Balancing stochastic two-sided assembly
lines: A chance-constrained, piecewise-linear, mixed
integer program and a simulated annealing algorithm.
European Journal of Operational Research, 205(1),
pp.81–97.
Özcan, U. & Toklu, B., 2009. Multiple-criteria decision-
making in two-sided assembly line balancing: A goal
programming and a fuzzy goal programming models.
Computers and Operations Research, 36(6), pp.1955–
1965.
Pastor, R. & Ferrer, L., 2009. An improved mathematical
program to solve the simple assembly line balancing
problem. International Journal of Production
Research, 47(11), pp.2943–2959.
Paternina-Arboleda, C. & Montoya-Torres, J.,
Mathematical formulation for a mixed-model assembly
line balancing problem with stochastic processing
times. laccei.org. Available at: http://www.laccei.org/
LACCEI2006-PuertoRico/Copyright
Pending/IT240_PaterninaArboleda.pdf [Accessed
September 27, 2016].
Patterson, J.H. & Albracht, J.J., 1975. Technical Note--
Assembly-Line Balancing: Zero-One Programming
with Fibonacci Search. Operations Research, 23(1),
pp.166–172.
Rabbani, M., Moghaddam, M. & Manavizadeh, N., 2012.
Balancing of mixed-Model two-Sided assembly lines
with multiple u-Shaped layout. International Journal of
Advanced Manufacturing Technology, 59(9–12),
pp.1191–1210.