Sign Language Recognition, pages 24–31. Springer
Berlin Heidelberg.
Fukui, K. and Maki, A. (2015). Difference subspace and
its generalization for subspace-based methods. IEEE
Trans. Pattern Anal. Mach. Intell., 37(11):2164–2177.
Fukui, K. and Yamaguchi, O. (2003). Face recognition us-
ing multi-viewpoint patterns for robot vision. Proc.
11th International Symposium of Robotics Research,
pages 192–201.
Hamm, J. and Lee, Daniel, D. (2008). Grassmann discrim-
inant analysis: A unifying view on subspace-based
learning. In Proceedings of the 25th International
Conference on Machine Learning, pages 376–383.
Harold, H. (1936). Relations between two sets of variates.
Biometrika, 28(3/4):321–377.
Jamie, S., Ross, G., Andrew, F., Toby, S., Mat, C., Mark, F.,
Richard, M., Pushmeet, K., Antonio, C., Alex, K., and
Andrew, B. (2012). Efficient Human Pose Estimation
from Single Depth Images, pages 175–192. Springer
London.
Jianguo, L., Eric, Lia nd Yurong, C., Lin, X., and Yimin,
Z. (2010). Bundled depth-map merging for multi-
view stereo. In Computer Vision and Pattern Recogni-
tion (CVPR), 2010 IEEE Conference on, pages 2769–
2776.
Kanade, T., Rander, P., and Narayanan, P. J. (1997). Vir-
tualized reality: Constructing virtual worlds from real
scenes. IEEE MultiMedia, 4(1):34–47.
Kawahara, T., Nishiyama, M., Kozakaya, T., and Yam-
aguchi, O. (2007). Face recognition based on whiten-
ing transformation of distribution of subspaces. Proc.
ACCV 2007 Workshops, Subspace2007, pages 97–
103.
Lee, K. C., Ho, J., and Kriegman, D. J. (2005). Acquiring
linear subspaces for face recognition under variable
lighting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(5):684–698.
Maeda, K. and Watanabe, S. (1985). A pattern match-
ing method with local structure. Trans. IEICE, J68-
D:345–352.
Michael, A. A. C. and Trevor, F. C. (2008). Multidimen-
sional Scaling, pages 315–347. Springer Berlin Hei-
delberg.
Ohkawa, Y. and Fukui, K. (2012). Hand shape recogni-
tion using the distributions of multi-viewpoint image
sets. IEICE Transactions on Information and Systems,
E95-D(6):1619–1627.
Paul, J. B. and Neil, D. M. (1992). A method for registration
of 3-d shapes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 14(2):239–256.
Ronen, B. and David, W. J. (2003). Lambertian reflectance
and linear subspaces. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 25(2):218–233.
Shen, W., Xiao, S., Jiang, N., and Liu, W. (2012). Unsu-
pervised human skeleton extraction from kinect depth
images. In Proceedings of the 4th International Con-
ference on Internet Multimedia Computing and Ser-
vice, pages 66–69.
Song, S. and Xiao, J. (2014). Sliding Shapes for 3D Object
Detection in Depth Images, pages 634–651. Springer
International Publishing.
Stefania, C., Stefano, R., and Gaetano, S. (2014). Cur-
rent research results on depth map interpolation tech-
niques. Lecture Notes in Computational Vision and
Biomechanics, 15:187–200.
Tomasi, C. and Kanade, T. (1992). Shape and motion
from image streams under orthography: a factoriza-
tion method. International Journal of Computer Vi-
sion, 9(2):137–154.
Watanabe, T., Ohtsuka, N., Shibusawa, S., Kamada, M., and
Yonekura, T. (2014). Motion detection and evaluation
of chair exercise support system with depth image sen-
sor. In Ubiquitous Intelligence and Computing, 2014
IEEE 11th Intl Conf, pages 800–807.
Yamaguchi, O., Fukui, K., and Maeda, K. (1998). Face
recognition using temporal image sequence. In Pro-
ceedings of the 3rd. International Conference on Face
and Gesture Recognition, pages 318–323.
Yoshinuma, T., Hino, H., and Fukui, K. (2015). Per-
sonal Authentication Based on 3D Configuration of
Micro-feature Points on Facial Surface, pages 433–
446. Springer International Publishing.
Yosuke, I. and Kazuhiro, F. (2011). 3d object recognition
based on canonical angles between shape subspaces.
In Computer Vision - ACCV 2010 - 10th Asian Con-
ference on Computer Vision, pages 580–591.
Yu, Y., Song, Y., and Zhang, Y. (2014). Real time fingertip
detection with kinect depth image sequences. In 2014
22nd International Conference on Pattern Recogni-
tion, pages 550–555.