Pedestrian Tracking using a Generalized Potential Field Approach

Florian Particke, Lucila Patiño-Studencki, Jörn Thielecke, Christian Feist

2017

Abstract

Mobile robots and autonomous driving cars operate in a shared environment with pedestrians. In order to avoid accidents, it is important to track and predict human trajectories in an optimal way. In this paper, a generalized potential field approach for characterizing pedestrian movements is proposed which goes beyond the well-known social force model. Its goal is to give a generalized architecture for improving the tracking accuracy of pedestrians in surveillance situations. In comparison to other fusion approaches, the number of proposed parameters is reduced and the parameters can be intuitively understood. For a simple scenario, in a forum the trajectories of pedestrians are predicted for a configured parameter set. For this purpose, the proposed model is used. The predicted trajectories are compared to the real trajectories of the pedestrians. First results regarding the accuracy of the approach are presented.

References

  1. Alberti, E. and Belli, G. (1978). Contributions to the boltzmann-like approach for traffic flow. a model for concentration dependent driving programs. Transportation Research, 12(1):33-42.
  2. Ali, S. and Shah, M. (2008). Floor fields for tracking in high density crowd scenes. In European conference on computer vision, pages 1-14. Springer.
  3. Bandyopadhyay, T., Jie, C. Z., Hsu, D., Ang Jr, M. H., Rus, D., and Frazzoli, E. (2013a). Intention-aware pedestrian avoidance. In Experimental Robotics, pages 963-977. Springer.
  4. Bandyopadhyay, T., Won, K. S., Frazzoli, E., Hsu, D., Lee, W. S., and Rus, D. (2013b). Intention-aware motion planning. In Algorithmic Foundations of Robotics X, pages 475-491. Springer.
  5. Dijkstra, J., Jessurun, J., and Timmermans, H. J. (2001). A multi-agent cellular automata model of pedestrian movement. Pedestrian and evacuation dynamics, pages 173-181.
  6. Dirk Helbing and Peter Molnar (1995). Social force model for pedestrian dynamics. Phys. Rev. E, 51:4282-4286.
  7. Edinburgh Informatics Forum Pedestrian Database (2010). Edinburgh informatics forum pedestrian database. http://homepages.inf.ed.ac.uk/rbf/FORUMTRACK ING/. Accessed: 2016-10-04.
  8. Fugger, T., Randles, B., Stein, A., Whiting, W., and Gallagher, B. (2000). Analysis of pedestrian gait and perception-reaction at signal-controlled crosswalk intersections. Transportation Research Record: Journal of the Transportation Research Board, 1(1705):20- 25.
  9. Heinemann, P., Becker, H., and Zell, A. (2006). Improved path planning in highly dynamic environments based on time variant potential fields. VDI BERICHTE, 1956:177.
  10. Helbing, D. (1998). A fluid dynamic model for the movement of pedestrians. arXiv preprint condmat/9805213.
  11. Ibisch, A., Houben, S., Michael, M., Kesten, R., and Schuller, F. (2015). Arbitrary object localization and tracking via multiple-camera surveillance system embedded in a parking garage. In Loce, R. P. and Saber, E., editors, Proceedings of Spie, page 94070G.
  12. Keller, C. G. and Gavrila, D. M. (2014). Will the Pedestrian Cross? A Study on Pedestrian Path Prediction. IEEE Transactions on Intelligent Transportation Systems, 15(2):494-506.
  13. Kretz, T. and Schreckenberg, M. (2006). FAST-floor field-and agent-based simulation tool. arXiv preprint physics/0609097.
  14. Luber, M., Stork, J. A., Tipaldi, G. D., and Arras, K. O. (2010). People tracking with human motion predictions from social forces. In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages 464-469. IEEE.
  15. Lüders, K. . O. G. (2008). Mechanik, Akustik, Wärme - Walter de Gruyter, Berlin.
  16. Niemeier, W. (2008). Ausgleichungsrechnung - statistische Auswertemethoden. Walter de Gruyter, Berlin, 2. aufl. edition.
  17. Prigogine, I. (1900). A boltzmann-like approach to the statistical theory of traffic flow. Theory of traffic flow .
  18. Robin, T., Antonini, G., Bierlaire, M., and Cruz, J. (2009). Specification, estimation and validation of a pedestrian walking behavior model. Transportation Research Part B: Methodological, 43(1):36-56.
  19. Sigloch, H. (2009). Technische Fluidmechanik -. SpringerVerlag, Berlin Heidelberg New York, 7. aufl. edition.
  20. Tamura, Y., Dai Le, P., Hitomi, K., Chandrasiri, N. P., Bando, T., Yamashita, A., and Asama, H. (2012). Development of pedestrian behavior model taking account of intention. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 382-387. IEEE.
  21. Tiemann, N. (2012). Ein Beitrag zur Situationsanalyse im vorausschauenden Fussgängerschutz. PhD thesis, Universität Duisburg-Essen, Fakultät für Ingenieurwissenschaften Maschinenbau und Verfahrenstechnik Institut für Mechatronik und Systemdynamik.
  22. Wakim, C. F., Capperon, S., and Oksman, J. (2004). A Markovian model of pedestrian behavior. In Systems, Man and Cybernetics, 2004 IEEE International Conference on, volume 4, pages 4028-4033. IEEE.
  23. Yi, S., Li, H., and Wang, X. (2015). Understanding pedestrian behaviors from stationary crowd groups. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3488-3496.
Download


Paper Citation


in Harvard Style

Particke F., Patiño-Studencki L., Thielecke J. and Feist C. (2017). Pedestrian Tracking using a Generalized Potential Field Approach . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 6: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-227-1, pages 509-514. DOI: 10.5220/0006215705090514


in Bibtex Style

@conference{visapp17,
author={Florian Particke and Lucila Patiño-Studencki and Jörn Thielecke and Christian Feist},
title={Pedestrian Tracking using a Generalized Potential Field Approach},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 6: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={509-514},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006215705090514},
isbn={978-989-758-227-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 6: VISAPP, (VISIGRAPP 2017)
TI - Pedestrian Tracking using a Generalized Potential Field Approach
SN - 978-989-758-227-1
AU - Particke F.
AU - Patiño-Studencki L.
AU - Thielecke J.
AU - Feist C.
PY - 2017
SP - 509
EP - 514
DO - 10.5220/0006215705090514