Table 4: Precision, Recall, F-Measure, MCC and RocArea for classifying Malware and Trusted applications.
Algorithm Precision Recall F-Measure MCC RocArea
M T M T M T M T M T
BN 0,970 0,962 0,970 0.962 0,970 0.962 0,931 0,931 0.963 0,963
NB 0,931 0,800 0,818 0,923 0,871 0,857 0,736 0,736 0,855 0,875
NBU 0,931 0,800 0,818 0,923 0,871 0,857 0,736 0,736 0,885 0,875
Log 0,931 0,800 0,818 0,923 0,871 0,857 0,736 0,736 0,797 0,792
MP 0,935 0,857 0,879 0,923 0,906 0,889 0,797 0,797 0,832 0,832
SGD 0,929 0,774 0,788 0,923 0,852 0,842 0,707 0,707 0,855 0,855
SL 0,920 0,706 0,697 0,923 0,793 0,800 0,623 0,623 0,804 0,804
SMO 0,793 0,667 0,667 0,769 0,742 0,717 0,463 0,463 0,733 0,733
IBk 0,966 0,833 0,848 0,962 0,903 0,893 0,804 0,804 0,871 0,871
KStar 0,969 0,926 0,939 0,962 0,954 0,943 0,898 0,898 0,990 0,990
LWL 0,962 0,758 0,758 0,962 0,847 0,847 0,719 0,719 0,861 0,861
AB 0,935 0,857 0,879 0,923 0,906 0,889 0,797 0,797 0,956 0,956
LB 0,939 0,923 0,939 0,923 0,939 0,923 0,862 0,862 0,952 0,952
DT 0,943 1,000 1,000 0,923 0,971 0,960 0,933 0,933 0,950 0,950
JRip 0,933 0,828 0,848 0,923 0,889 0,873 0,766 0,766 0,898 0,898
OneR 0,971 1,000 1,000 0,962 0,985 0,980 0,966 0,966 0,981 0,981
PART 0,966 0,833 0,848 0,962 0,903 0,893 0,804 0,804 0,909 0,909
J48 0,960 0,735 0,727 0,962 0,828 0,833 0,692 0,692 0,839 0,839
RF 0,970 0,962 0,970 0,962 0,970 0,962 0,931 0,931 0,969 0,969
RnTree 0,941 0,960 0,970 0,923 0,955 0,941 0,897 0,987 0,946 0,946
RepTree 0,917 0,686 0,667 0,923 0,772 0,787 0,596 0,596 0,786 0,786
a negative randomly chosen.
MCC takes into account true and false positives
and negatives and is generally regarded as a balanced
measure which can be used even if the classes are of
very different sizes:
MCC =
t p∗tn−f p∗f n
√
(t p+ f p)(t p+ f n)(tn+ f p)(tn+ f n)
where tn is the number of true negatives.
Table 4 shows the classification results.
We compute both the value of the metrics related
to malware and trusted identification; relating to pre-
cision the more accurate algorithms to discriminate
iOS malware samples is the OneR algorith, with a pre-
cision equal to 0,971 and a recall equal to 1.
RQ response: The evaluation shows that the featu-
res are effective to detect iOS mobile malware, obtai-
ning the best detection capability with the OneR algo-
rithm.
4 PERFORMANCE EVALUATION
In this section we discuss the performances of our ap-
proach. In order to measure performances, we used
the System.currentTimeMillis() Java method that re-
turns the current time in milliseconds. The machine
used to run the experiments and to take measurements
Table 5: The performance evaluation (values are expressed
in seconds).
t
f v
t
m
total time
2.1584 s 0.0289 s 2,1873 s
was an Intel Core i5 desktop with 4 gigabyte RAM,
equipped with Linux Mint 15. We consider the overall
time to analyse a sample as the sum of two different
contributions: the average time required to extract the
feature vector from an iOS application (t
f v
) and the
time required to test the extracted feature vector with
the model learned by using the OneR algorithm (t
m
).
Table 5 shows the performance of our method.
The most intensive task from the computational
point of view is represented by t
f v
, while t
m
requi-
res 0.0289 seconds to evaluate the feature vector: the
proposed approach takes 2,1873 seconds to test a new
sample.
5 CONCLUSION AND FUTURE
WORK
While research community has largely studied An-
droid malware, literature lacks of approach conside-
ring Apple environment. This is the reason why in
this paper we propose a method to identify iOS mali-
Machine Learning Meets iOS Malware: Identifying Malicious Applications on Apple Environment
491