used for the amplitude image recording and for
storing information in the form of the Bragg
gratings.
ACKNOWLEDGEMENTS
Research was funded by Russian Science
Foundation (Agreement #14-23-00136).
REFERENCES
Babkina, A.N. et al., 2015. Spectral properties of copper
halide nanocrystals in glasses of fluorine-phosphate
matrix. Optics and Spectroscopy, 119(2), pp.243–247.
Available at: http://link.springer.com/10.1134/
S0030400X15080032.
Barkatt, A., Angell, C.A. & Miller, J.R., 1981. Visible
Spectroscopy of Irradiated High-Alkali Borate and
Mixed-Alkali Phosphate Glasses. Journal of American
Ceramic Society, 64(3), pp.158–162.
Bishay, A., 1970. Radiation Induced Color Centers in
Multicomponent Glasses. J. of Non-Crystalline Solids,
3, pp.54–114.
Cardona, M., 1963. Optical Properties of the Silver and
Cuprous Halides. Physical Review, 129(1), pp.69–78.
Dotsenko, A. V., Glebov, L.B. & Tsekhomsky, V.A.,
1998. Physics and Chemistry of Photochromic
Glasses, New York: CRC Press.
Efros, A.L. & Efros, A.L., 1982. Interband absorption of
light in a semiconductor sphere. Soviet physics.
Semiconductors, 16(7).
Ehrt, D., 1992. Structure and properties of fluoride
phosphate glasses. Proc. of SPIE, 1761, pp.213–222.
Ekimov, A., 1996. Growth and optical properties of
semiconductor nanocrystals in a glass matrix. Journal
of Luminescence, 70(1–6), pp.1–20. Available at:
http://www.sciencedirect.com/science/article/pii/0022
231396000403.
El-Batal, F.H., 2008. Gamma ray interaction with copper-
doped sodium phosphate glasses. Journal of Materials
Science, 43(3), pp.1070–1079.
ElBatal, H.A. et al., 2013. Gamma rays interaction with
copper doped lithium phosphate glasses. Journal of
Molecular Structure, 1054–1055, pp.57–64. Available
at: http://linkinghub.elsevier.com/retrieve/pii/
S0022286013007977.
Goldmann, A., 1977. Band Structure and Optical
Properties of Tetrahedrally Coordinated Cu- and Ag-
Halides. Phys. Stat. Sol (b), 81(9), pp.9–47.
Golubkov, V.V. et al., 2012. Precipitation of nanosized
crystals CuBr and CuCl in potassium aluminoborate
glasses. Glass Physics and Chemistry, 38(3).
Golubkov, V.V. & Tsekhomskii, V.A., 1998. Composition
and structure of copper halide phase in sodium and
potassium aluminoborosilicate glasses. Glass Physics
and Chemistry, 24(1).
Golubkov, V.V. & Tsekhomskii, V.A., 1982. Phase
changes in Copper Halide photochromic glasses. The
Soviet journal of glass physics and chemistry, 8(4).
Golubkov, V.V. & Tsekhomskii, V.A., 1986. Role of
Sodium Chloride in the formation of a light-sensitive
phase in Copper Halide photochromic glass. The
Soviet journal of glass physics and chemistry, 12(2).
Möncke, D. et al., 2014. Irradiation-induced defects in
ionic sulfophosphate glasses. Journal of Non-
Crystalline Solids, 383, pp.33–37. Available at:
http://dx.doi.org/10.1016/j.jnoncrysol.2013.04.029.
Morse, D.L., 1981. Copper halide containing
photochromic glasses. Inorganic Chemistry, 20(3),
pp.777–780. Available at: http://pubs.acs.org/doi/abs/
10.1021/ic50217a028.
Narayanan, M.K. & Shashikala, H.D., 2015a. Physical,
mechanical and structural properties of BaO–CaF2–
P2O5 glasses. Journal of Non-Crystalline Solids, 430,
pp.79–86. Available at: http://linkinghub.elsevier.com/
retrieve/pii/S0022309315302106.
Narayanan, M.K. & Shashikala, H.D., 2015b. Thermal and
optical properties of BaO–CaF2–P2O5 glasses.
Journal of Non-Crystalline Solids, 422, pp.6–11.
Available at: http://linkinghub.elsevier.com/retrieve/
pii/S0022309315300119.
Onushchenko, A.A. & Petrovskii, G.T., 1996. Size effects
in phase transitions of semiconductor nanoparticles
embedded in glass. J. Non-Cryst. Sol., 196, pp.73–78.
Ruller, J.A. & Friebele, E.J., 1991. The effect of gamma-
irradiation on the density of various types of silica.
Journal of Non-Crystalline Solids, 136(1–2), pp.163–
172.
Sheng, J. et al., 2009. UV-light irradiation induced copper
nanoclusters in a silicate glass. International Journal
of Hydrogen Energy, 34(2), pp.1119–1122. Available
at: http://dx.doi.org/10.1016/j.ijhydene.2008.10.063.
Shirshnev, P. et al., 2015. Copper-containing potassium-
alumina-borate glass: Structure and nonlinear optical
properties correlation. PHOTOPTICS 2015 - 3rd
International Conference on Photonics, Optics and
Laser Technology, Proceedings, 1, pp.108–112.
Tsai, T.E. et al., 1989. Radiation-induced defect centers in
glass ceramics. Journal of Applied Physics, 65,
pp.507–514.
Tsai, T.E. et al., 1987. Radiation effects on a low-thermal-
expansion glass ceramic. Journal of Applied Physics,
62(8), p.3488. Available at: http://scitation.aip.org
/content/aip/journal/jap/62/8/10.1063/1.339272.
Tsai, T.E., Griscom, D.L. & Friebele, E.J., 1990. Si E’
CENTERS AND UV-INDUCED COMPACTION IN
HIGH PURITY SILICA. Nuclear Instruments and
Methods in Physics Research B, 46, pp.265–268.
Vázquez-Vázquez, C. et al., 2009. Synthesis of small
atomic copper clusters in microemulsions. Langmuir,
25(14), pp.8208–8216.