Valued Signals. International Journal of Neural
Systems, Vol. 10, No. 1, World Scientic Publishing
Company (2000)
Cichocki, A., Zdunek, R., Amari, S.: Nonnegative Matrix
and Tensor Factorization. IEEE Signal Processing
Magazine, Vol. 25, No. 1, 142-145 (2008)
Cortes C., Vapnik V.: Support-vector
networks.Mach.Learn.20, pp. 273–297 (1995)
Cyganek B., An Analysis of the Road Signs Classification
Based on the Higher-Order Singular Value
Decomposition of the Deformable Pattern Tensors,
Advanced Concepts for Intelligent Vision Systems:
12th International Conference, ACIVS 2010, Sydney,
Australia, December 13-16, pp. 191–202 (2010)
Cyganek, B., Object Detection and Recognition in Digital
Images: Theory and Practice, Wiley (2013)
Cyganek B., Krawczyk B., Woźniak M.: Multidimensional
Data Classification with Chordal Distance Based
Kernel and Support Vector Machines. Engineering
Applications of Artificial Intelligence, Elsevier, Vol.
46, Part A, pp. 10–22 (2015)
Demmel J.W.: Applied Numerical Linear Algebra. Siam
(1997)
Georgia Tech Face Database, 2013.
http://www.anefian.com/research/face_reco.htm
Golub, G.H., van Loan, C.F.: Matrix Computations. Johns
Hopkins Studies in the Mathematical Sciences. Johns
Hopkins University Press (2013)
Hamm, J., Lee, D.: Grassmann discriminant analysis: a
unifying view on subspace-based learning. In
Proceedings of the 25th international conference on
machine learning (pp. 376–383). ACM
Kolda, T.G., Bader, B.W.: Tensor Decompositions and
Applications. SIAM Review, 455-500 (2008)
Krawczyk B.: One-class classifier ensemble pruning and
weighting with firefly algorithm. Neurocomputing 150,
pp. 490-500 (2015)
Kung S.Y.: Kernel Methods and Machine Learning.
Cambridge Universisty Press (2014)
Lathauwer, de L.: Signal Processing Based on Multilinear
Algebra. PhD dissertation, Katholieke Universiteit
Leuven (1997)
Lathauwer, de L., Moor de, B., Vandewalle, J.: A
Multilinear Singular Value Decomposition. SIAM
Journal of Matrix Analysis and Applications, Vol. 21,
No. 4, 1253-1278 (2000)
Liu C., Wei-sheng X., Qi-di W.: Tensorial Kernel Principal
Component Analysis for Action Recognition.
Mathematical Problems in Engineering, Vol. 2013,
Article ID 816836, 16 pages, 2013.
doi:10.1155/2013/816836.
Marot J., Fossati C., Bourennane S.: About Advances in
Tensor Data Denoising Methods. EURASIP Journal on
Advances in Signal Processing, (2008)
Meyer C.D.: Matrix Analysis and Applied Linear Algebra
Book and Solutions Manual. SIAM (2001)
Signoretto M., De Lathauwer L., Suykens J.A.K. : A
kernel-based framework to tensorial data analysis.
Neural Networks 24, pp. 861–874 (2011)
Vasilescu M.A., Terzopoulos D.: Multilinear analysis of
image ensembles: TensorFaces. Proceedings of
Eurpoean Conference on Computer Vision, pp. 447–
460, (2002)
Q. Zhao, G. Zhou, T. Adali, L. Zhang and A. Cichocki,
Kernelization of Tensor-Based Models for Multiway
Data Analysis: Processing of Multidimensional
Structured Data, in IEEE Signal Processing Magazine,
vol. 30, no. 4, pp. 137-148, July 2013. doi:
10.1109/MSP.2013.2255334