keypoints. IEEE Transactions on Information Foren-
sics and Security, 10(10):2084–2094.
Ardizzone, E. and Mazzola, G. (2009). Detection of dupli-
cated regions in tampered digital images by bit-plane
analysis. In Image Analysis and Processing–ICIAP
2009, pages 893–901. Springer.
Bashar, M., Noda, K., Ohnishi, N., and Mori, K. (2010).
Exploring duplicated regions in natural images.
Bentley, J. L. (1975). Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18(9):509–517.
Chen, W., Shi, Y. Q., and Su, W. (2007). Image splicing de-
tection using 2-d phase congruency and statistical mo-
ments of characteristic function. In Society of photo-
optical instrumentation engineers (SPIE) conference
series, volume 6505, page 26. Citeseer.
Cuevas, E., Oliva, D., Zaldivar, D., P
´
erez-Cisneros,
M., and Sossa, H. (2012). Circle detection using
electro-magnetism optimization. Information Scien-
ces, 182(1):40–55.
Dadkhah, S., Manaf, A. A., and Sadeghi, S. (2014). An ef-
fective svd-based image tampering detection and self-
recovery using active watermarking. Signal Proces-
sing: Image Communication.
Farid, H. and Lyu, S. (2003). Higher-order wavelet statis-
tics and their application to digital forensics. In IEEE
workshop on statistical analysis in computer vision,
volume 8, page 94. Citeseer.
Fridrich, A. J., Soukal, B. D., and Luk
´
a
ˇ
s, A. J. (2003). De-
tection of copy-move forgery in digital images. In in
Proceedings of Digital Forensic Research Workshop.
Citeseer.
Fridrich, J. (1999). Methods for tamper detection in digi-
tal images. In Multimedia and Security, Workshop at
ACM Multimedia, volume 99, pages 29–34.
Hou, D. M., Bai, Z. Y., and Liu, S. C. (2012). A new algo-
rithm for image copy-move forgery detection. In Ad-
vanced Materials Research, volume 433, pages 5930–
5934. Trans Tech Publ.
Hu, J., Zhang, H., Gao, Q., and Huang, H. (2011).
An improved lexicographical sort algorithm of copy-
move forgery detection. In Networking and Distribu-
ted Computing (ICNDC), 2011 Second International
Conference on, pages 23–27. IEEE.
Jalab, H. A. and Abdullah, N. A. (2013). Content-based
image retrieval based on electromagnetism-like me-
chanism. Mathematical Problems in Engineering,
2013.
Jalab, H. A. and Shaker, K. (2014). Training the neural
networks by electromagnetism-like mechanism based
algorithm. In INTERNATIONAL CONFERENCE ON
QUANTITATIVE SCIENCES AND ITS APPLICATI-
ONS (ICOQSIA 2014): Proceedings of the 3rd Inter-
national Conference on Quantitative Sciences and Its
Applications, volume 1635, pages 582–586. AIP Pu-
blishing.
Jing, L. and Shao, C. (2012). Image copy-move forgery
detecting based on local invariant feature. Journal of
Multimedia, 7(1).
Kang, X. B. and Wei, S. M. (2008). Identifying tampered
regions using singular value decomposition in digital
image forensics. In Computer Science and Software
Engineering, 2008 International Conference on, vo-
lume 3, pages 926–930. IEEE.
Kirchner, M., Sch
¨
ottle, P., and Riess, C. (2015). Thin-
king beyond the block: block matching for copy-move
forgery detection revisited. In SPIE/IS&T Electronic
Imaging, pages 940903–940903. International Society
for Optics and Photonics.
Li, W. and Yu, N. (2010). Rotation robust detection of copy-
move forgery. In Image Processing (ICIP), 2010 17th
IEEE International Conference on, pages 2113–2116.
IEEE.
Li, Y. and Wang, H. (2012). An efficient and robust met-
hod for detecting region duplication forgery based on
non-parametric local transforms. In Image and Signal
Processing (CISP), 2012 5th International Congress
on, pages 567–571. IEEE.
Lin, Z., He, J., Tang, X., and Tang, C.-K. (2009). Fast,
automatic and fine-grained tampered jpeg image de-
tection via dct coefficient analysis. Pattern Recogni-
tion, 42(11):2492–2501.
Liu, G., Wang, J., Lian, S., and Wang, Z. (2011). A passive
image authentication scheme for detecting region-
duplication forgery with rotation. Journal of Network
and Computer Applications, 34(5):1557–1565.
Mishra, P., Mishra, N., Sharma, S., and Patel, R. (2013).
Region duplication forgery detection technique based
on surf and hac. The Scientific World Journal, 2013.
Ng, T.-T., Chang, S.-F., Hsu, J., and Pepeljugoski, M.
(2005). Columbia photographic images and photorea-
listic computer graphics dataset. Columbia Univ., New
York, ADVENT Tech. Rep, pages 205–2004.
Piva, A. (2013). An overview on image forensics. ISRN
Signal Processing, 2013.
Popescu, A. C. and Farid, H. (2004). Exposing digital for-
geries by detecting duplicated image regions. Dept.
Comput. Sci., Dartmouth College, Tech. Rep. TR2004-
515.
Rosenfeld, A. and Kak, A. C. (2014). Digital picture pro-
cessing, volume 1. Elsevier.
Ryu, S.-J., Lee, M.-J., and Lee, H.-K. (2010). Detection of
copy-rotate-move forgery using zernike moments. In
International Workshop on Information Hiding, pages
51–65. Springer.
Silva, E., Carvalho, T., Ferreira, A., and Rocha, A. (2015).
Going deeper into copy-move forgery detection: Ex-
ploring image telltales via multi-scale analysis and vo-
ting processes. Journal of Visual Communication and
Image Representation, 29:16–32.
Turabieh, H. and Abdullah, S. (2011). An integrated hy-
brid approach to the examination timetabling problem.
Omega, 39(6):598–607.
Wu, H.-C. and Chang, C.-C. (2002). Detection and restora-
tion of tampered jpeg compressed images. Journal of
Systems and Software, 64(2):151–161.
Electromagnetismlike Mechanism Descriptor with Fourier Transform for a Passive Copy-move Forgery Detection in Digital Image Forensics
619