will lead to (optical) better results. The incorporation
of adequate interpolation technologies, such as image
inpainting, can improve the quality of the images. As
stated in section 6, this is not the current goal of our
method, but subject of our current research.
REFERENCES
Bay, H., Tuytelaars, T., and Gool, L. V. (2006). SURF :
Speeded Up Robust Features. In European Confer-
ence on Computer Vision, pages 404–417.
Einecke, N. and Eggert, J. (2015). A Multi-Block-Matching
Approach for Stereo. In Intelligent Vehicles Sympo-
sium, pages 585–592.
Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready
for Autonomous Driving? The KITTI Vision Bench-
mark Suite. In Computer Vision and Pattern Recogni-
tion, pages 3354–3361.
Geyer, C. and Daniilidis, K. (2001). Catadioptric projective
geometry. International Journal of Computer Vision,
45(3):223–243.
Grimson, W. E. (1985). Computational experiments with a
feature based stereo algorithm. Transactions on Pat-
tern Analysis and Machine Intelligence, 7(1):17–34.
Hartley, R. and Zisserman, A. (2003). Multiple View Geom-
etry in Computer Vision. Cambridge University Press,
New York, NY, USA, 2 edition.
Hermann, S. and Klette, R. (2013). Iterative semi-global
matching for robust driver assistance systems. In
Asian Conference on Computer Vision, pages 465–
478.
Hirschm¨uller, H. (2008). Stereo processing by semiglobal
matching and mutual information. Transactions
on Pattern Analysis and Machine Intelligence,
30(2):328–341.
Horaud, R. and Skordas, T. (1989). Stereo correspondence
through feature grouping and maximal cliques. Trans-
actions on Pattern Analysis and Machine Intelligence,
11(11):1168–1180.
Laveau, S. and Faugeras, O. (1994). 3-D scene representa-
tion as a collection of images. International Confer-
ence on Pattern Recognition, 1.
Lenz, R. K. and Tsai, R. Y. (1988). Techniques for cali-
bration of the scale factor and image center for high
accuracy 3-D machine vision metrology. Transac-
tions on Pattern Analysis and Machine Intelligence,
10(5):713–720.
Li, S. and Hai, Y. (2011). Easy calibration of a blind-spot-
free fisheye camera system using a scene of a parking
space. Transactions on Intelligent Transportation Sys-
tems, 12(1):232–242.
Liu, Y. C., Lin, K. Y., and Chen, Y. S. (2008). Bird’s-eye
view vision system for vehicle surrounding monitor-
ing. LNCS, 4931:207–218.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International Journal of Com-
puter Vision, 60(2):91–110.
Pantilie, C. D. and Nedevschi, S. (2012). SORT-SGM: Sub-
pixel Optimized Real-Time Semiglobal Matching for
Intelligent Vehicles. Transactions on Vehicular Tech-
nology, 61(3):1032–1042.
Pfeiffer, D., Gehrig, S., and Schneider, N. (2013). Exploit-
ing the power of stereo confidences. Computer Vision
and Pattern Recognition, pages 297–304.
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.
(2011). ORB - an efficient alternative to SIFT or
SURF. In International Conference on Computer Vi-
sion, pages 2564–2571.
Sato, T., Moro, A., Sugahara, A., Tasaki, T., Yamashita,
A., and Asama, H. (2013). Spatio-temporal bird’s-eye
view images using multiple fish-eye cameras. Interna-
tional Symposium on System Integration, pages 753–
758.
Scaramuzza, D. (2008). Ominidirectional vision: from cal-
ibration to robot estimation. PhD thesis, Citeseer.
Scharstein, D., Hirschm¨uller, H., Kitajima, Y., Krath-
wohl, G., Neˇsi´c, N., Wang, X., and Westling,
P. (2014). High-Resolution Stereo Datasets with
Subpixel-Accurate Ground Truth. German Confer-
ence on Pattern Recognition, 1(2):31–42.
Scharwachter, T., Schuler, M., and Franke, U. (2014). Vi-
sual guard rail detection for advanced highway assis-
tance systems. Intelligent Vehicles Symposium, pages
900–905.
Shum, H.-Y. and Kang, S. B. (2000). A review of image-
based rendering techniques. Proc. SPIE Visual Com-
munications and Image Processing, pages 2–13.
Thomas, B., Chithambaran, R., Picard, Y., and Cougnard,
C. (2011). Development of a cost effective bird’s eye
view parking assistance system. Recent Advances in
Intelligent Computational Systems, pages 461–466.
Tsai, R. Y. (1987). A Versatile Camera Calibration Tech-
nique for High-Accuracy 3D Machine Vision Metrol-
ogy Using Off-the-Shelf TV Cameras and Lenses.
Journal on Robotics and Automation, 3(4):323–344.
Vincent, E. and Lagani`ere, R. (2001). Detecting planar ho-
mographies in an image pair. International Sympo-
sium on Image and Signal Processing and Analysis,
0(2):182–187.
Vogt, F., Kr¨uger, S., Schmidt, J., Paulus, D., Niemann, H.,
Hohenberger, W., and Schick, C. H. (2004). Light
fields for minimal invasive surgery using an endo-
scope positioning robot. Methods of information in
medicine, 43(4):403–408.
Zhang, Z. (2000). A flexible new technique for camera cal-
ibration. Transactions on Pattern Analysis and Ma-
chine Intelligence, 22(11):1330–1334.
Zinger, S., Do, L., and De With, P. H. N. (2010). Free-
viewpoint depth image based rendering. Journal of Vi-
sual Communication and Image Representation, 21(5-
6):533–541.