
REFERENCES 
Barbedo, J., 2013. Digital image processing techniques for 
detecting,  quantifying  and  classifying  plant  diseases. 
In SpringerPlus, 2:660.  
Bock, C., Poole, G., Parker, P., Gottwald, T., 2010. Plant 
disease  severity  estimated  visually,  by  digital 
photography and image analysis, and by hyperspectral 
imaging.  In  Critical  Reviews  in  Plant  Sciences,  vol. 
29, n. 1-3, pp.:59–107.  
Bugiani,  R.  et  al.,  1995.  Monitoring  airborne 
concentrations of sporangia of Phytophthora infestans 
in  relation to tomato late blight in  Emilia  Romagna, 
Italy. In International Journal of Aerobiology, vol. 11, 
, pp.:41-46, Elsevier Science. 
Correa,  F.,  Bueno,  J.,  Carmo,  M.,  2009.  Comparison  of 
three diagrammatic keys for the quantification of late 
blight  in tomato leaves. In  Plant  Pathology, vol. 58, 
pp.:1128-1133. 
Goufo, O., Mofor, T., Ngnokam, D., 2008. High Efficacy 
of Extracts of Cameroon Plants Against Tomato Late 
Blight  Disease.  In  Agronomy  for  Sustainable 
Development,  vol.  8,  INRA,  EDP  Sciences,  pp.567-
573. 
Hyre,  R.,  1954.  Progress  in  forecasting  late  blight  of 
potato and tomato. In Plant Disease Reporter, Illinois, 
vol. 38, n.4, pp.: 245-253. 
IBGE, 2016. Sistema IBGE de Recuperação Automática – 
SIDRA.  [online]  Available  at:  http://www.sidra.ibge. 
gov.br/bda/agric/default.asp?z=t&o=11&i=P 
[Accessed 18 Oct. 2016]. 
INMET,  2016.  [online]  Available  at:  http:// 
www.inmet.gov.br/portal/ [Accessed 5 Jun. 2016]. 
Mahlein,  A.,  Oerke,  E.,  Steiner,  U.,  Dehne,  H.,  2012. 
Recent  advances  in  sensing  plant  diseases  for 
precision  crop  protection.  In  European  Journal  of 
Plant Pathology, vol. 133, n.1, pp.:197-209.  
MAPA, 2016. Estatísticas e Dados Básicos de Economia 
Agrícola.  [online]  Available  at:  http:// 
www.agricultura.gov.br/arq_editor/Pasta%20de%20Se
tembro%20-%202016.pdf, [Accessed 10 Oct. 2016]. 
Mizubuti,  E.,  Maziero,  J.,  Maffia,  L,  Haddad,  F.,  Lima, 
M., 2002. CGTE Program: Simulation, Epidemiology 
and Management of Late  Blight. In  Global Initiative 
on Late Blight Conference, Hamburg, Germany.  
Neves, E., Rodrigues, L., Dayoub, M., Dragone, D., 2003. 
Bataticultura: dispêndios com defensivos agrícolas no 
quinquênio 1997-2001. In Batata Show, vol. 6, pp. 22-
23. 
Nixon,  M.,  Aguado,  A.,  2008.  Feature  Extraction  and 
Image Processing, 2nd Ed, Elsevier Ltd. 
Park,  D.,  Zhang,  Y.,  Kim,  B.,  2014.  Improvement  of 
resistance  to  late  blight  in  hybrid  tomato.  In  Hort. 
Environm.  Biotechnol,  vol.  55(2),  Springer,  pp.:120-
124. 
Rebouças, T. et al., 2014. Potencialidade de Fungicida e 
Agente  Biológico  no  Controle  da  Requeima  do 
Tomateiro. In Horticultura Brasileira, vol.32(01). 
Rembialkowska, E., 2007. Quality of plant products from 
organic  agriculture.  In  J.  Sci.  Food  Agric.,  vol.  87, 
pp.:2757–2762. 
Sankaran, S., Mishraa, A., Ehsani, R., Davis, C., 2010. A 
review  of  advanced  techniques  for  detecting  plant 
diseases. In Computers and Electronics in Agriculture, 
vol. 72, n.1, pp.:1-13. 
Saxena,  A.,  Sarma,  B.,  Singh,  H.,  2014.  Effect  of 
Azoxystrobin  Based  Fungicides  in  Management  of 
Chilli  and  Tomato  Diseases.  In  Proced.  National 
Academy of Sciences, India:Springer. 
Sevarac,  Z.,  2012.  Neuroph  -  Java  neural  network 
framework.  [online]  Available  at:  http:// 
neuroph.sourceforge.net/ [Accessed 10 Jan. 2012]. 
Tilman, D. et al., Agricultural sustainability and intensive 
production  practices,  2002.  In  Nature,  Aug  8, 
418(6898), pp.: 671-677. 
UCIPM,  2016.  [online]  Available  at: 
http://www.ipm.ucdavis.edu/DISEASE/DATABASE/
potatolateblight.html [Accessed 9 Jun. 2016]. 
USDA,  2016.  USABlight  Project,  [online]  Available  at: 
https://usablight.org/node/29 [Accessed 4 Oct. 2016]. 
Vianna,  G.,  Cruz,  S.,  2013a.  Análise  inteligente  de 
imagens  digitais  no  monitoramento  da  requeima  em 
tomateiros.  In  Anais  do  IX  Congresso  Brasileiro  de 
Agroinformática. Cuiabá, Brazil. 
Vianna,  G.K.,  Cruz,  S.,  2013b.  Redes  neurais  artificiais 
aplicadas  ao  monitoramento  da  requeima  em 
tomateiros.  In  Anais  do  X  Encontro  Nacional  de 
Inteligência  Artificial  e  Computacional  (ENIAC), 
Fortaleza, Brazil.  
Vibhute,  A.,  Bodhe,  S.K.,  2012.  Applications  of  image 
processing  in  agriculture:  a  survey.  In  International 
Journal  of  Computer  Applications,  vol.  52,  n.2, 
pp.:34-40.  
Zamberlan, F.  et  al., 2014.  Produção  e  manejo  agrícola: 
impactos e desafios para sustentabilidade ambiental. In 
Engenharia Sanitária Ambiental, Edição Especial, pp. 
95-100. 
Zhang,  C.  et  al.,  2013.  Fine  mapping  of  the  Ph-3  gene 
conferring  resistance  to  late  blight  (Phytophthora 
infestans) in tomato. In Theor. Appl. Genet., vol. 126, 
Springer-Verlag, pp.:2643-2653. 
Zhanga,  N.,  Wangb,  M.,  Wanga,  N.,  2002.  Precision 
agriculture-a worldwide overview. In Computers and 
Electronics  in  Agriculture.  vol.  36,  issues  2-3, 
pp.:113-132. 
ICEIS 2017 - 19th International Conference on Enterprise Information Systems
488