In fact, a distributed algorithm could provide a more
robust and reliable solution.
ACKNOWLEDGEMENTS
This research has been funded by the SAGA project
of the Aalto Energy Efficiency (AEF) Research Pro-
gram and the Flexible Customer project funded by the
Academy of Finland.
REFERENCES
AMQP (2016). Amqp web page, https://www.amqp.org/.
Angeli, D. and Kountouriotis, P.-A. (2012). A Stochastic
Approach to Dynamic-Demand Refrigerator Control.
IEEE Transactions on Control Systems Technology,
20(3):581–592.
de la Torre Rodriguez, M., Scherer, M., Whitley, D., and
Reyer, F. (2014). Frequency containment reserves di-
mensioning and target performance in the European
power system. In 2014 IEEE PES General Meeting —
Conference & Exposition, pages 1–5. IEEE.
Entsoe (2015). Supporting document for the network code
on load-frequency control and reserves.
Fang, X., Misra, S., Xue, G., and Yang, D. (2012). Smart
gridthe new and improved power grid: A survey. IEEE
communications surveys & tutorials, 14(4):944–980.
Fingrid (2016). Fingrid web page,
http://www.fingrid.fi/en/pages/default.aspx.
Giovanelli, C., Kilkki, O., Seilonen, I., and Vyatkin, V.
(2016). Distributed ict architecture and an application
for optimized automated demand response. In IEEE
PES ISGT Europe 2016. IEEE.
Gkatzikis, L., Koutsopoulos, I., and Salonidis, T. (2013).
The role of aggregators in smart grid demand response
markets. IEEE Journal on Selected Areas in Commu-
nications, 31(7):1247–1257.
Grijalva, S. and Tariq, M. U. (2011). Prosumer-based smart
grid architecture enables a flat, sustainable electricity
industry. In ISGT 2011, pages 1–6. IEEE.
Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C.,
Cecati, C., and Hancke, G. P. (2013). A Survey on
Smart Grid Potential Applications and Communica-
tion Requirements. IEEE Transactions on Industrial
Informatics, 9(1):28–42.
Halamay, D. A., Brekken, T. K. A., Simmons, A., and
McArthur, S. (2011). Reserve Requirement Impacts
of Large-Scale Integration of Wind, Solar, and Ocean
Wave Power Generation. IEEE Transactions on Sus-
tainable Energy, 2(3):321–328.
Kilkki, O., Kangasr
¨
a
¨
asi
¨
o, A., Nikkil
¨
a, R., Alah
¨
aiv
¨
al
¨
a, A.,
and Seilonen, I. (2014). Agent-based modeling and
simulation of a smart grid: A case study of communi-
cation effects on frequency control. Engineering Ap-
plications of Artificial Intelligence, 33:91–98.
Kim, Y.-J., Thottan, M., Kolesnikov, V., and Lee, W. (2010).
A secure decentralized data-centric information in-
frastructure for smart grid. IEEE Communications
Magazine, 48(11):58–65.
Lalor, G., Mullane, A., and O’Malley, M. (2005). Fre-
quency Control and Wind Turbine Technologies.
IEEE Transactions on Power Systems, 20(4):1905–
1913.
Mainsfrequency (2012). Mainsfrequency web page,
http://www.mainsfrequency.com/services.htm.
Masuta, T. and Yokoyama, A. (2012). Supplementary load
frequency control by use of a number of both electric
vehicles and heat pump water heaters. IEEE Transac-
tions on Smart Grid, 3(3):1253–1262.
Megel, O., Mathieu, J. L., and Andersson, G. (2013). Max-
imizing the potential of energy storage to provide fast
frequency control. In IEEE PES ISGT Europe 2013,
pages 1–5. IEEE.
Molina-Garcia, A., Bouffard, F., and Kirschen, D. S.
(2011). Decentralized demand-side contribution to
primary frequency control. IEEE Transactions on
Power Systems, 26(1):411–419.
Pourmousavi, S. A. and Nehrir, M. H. (2012). Real-
Time Central Demand Response for Primary Fre-
quency Regulation in Microgrids. IEEE Transactions
on Smart Grid, 3(4):1988–1996.
RabbitMQ (2016). Rabbimq web page,
https://www.rabbitmq.com/.
Rodrigues, J. (2013). Service-oriented middleware for
smart grid: Principle, infrastructure, and application.
IEEE Communications Magazine, 51(1):84–89.
Samarakoon, K., Ekanayake, J., and Jenkins, N. (2012). In-
vestigation of Domestic Load Control to Provide Pri-
mary Frequency Response Using Smart Meters. IEEE
Transactions on Smart Grid, 3(1):282–292.
Short, J. A., Infield, D. G., and Freris, L. L. (2007). Sta-
bilization of Grid Frequency Through Dynamic De-
mand Control. IEEE Transactions on Power Systems,
22(3):1284–1293.
Siano, P. (2014). Demand response and smart gridsA sur-
vey. Renewable and Sustainable Energy Reviews,
30:461–478.
Stadler, M., Krause, W., Sonnenschein, M., and Vogel, U.
(2009). Modelling and evaluation of control schemes
for enhancing load shift of electricity demand for
cooling devices. Environmental Modelling & Soft-
ware, 24(2):285–295.
Vrettos, E., Oldewurtel, F., Zhu, F., and Andersson, G.
(2014). Robust Provision of Frequency Reserves by
Office Building Aggregations. IFAC Proceedings Vol-
umes, 47(3):12068–12073.
Xu, Z., Ostergaard, J., and Togeby, M. (2011). Demand as
Frequency Controlled Reserve. IEEE Transactions on
Power Systems, 26(3):1062–1071.
Yan, Y., Qian, Y., Sharif, H., and Tipper, D. (2013). A
survey on smart grid communication infrastructures:
Motivations, requirements and challenges. IEEE com-
munications surveys & tutorials, 15(1):5–20.
Zaballos, A., Vallejo, A., and Selga, J. M. (2011). Heteroge-
neous communication architecture for the smart grid.
IEEE Network, 25(5):30–37.
SMARTGREENS 2017 - 6th International Conference on Smart Cities and Green ICT Systems
142