Heuristic Approximation of the MAP Estimator for Automatic Two-channel Sleep Staging

Shirin Riazy, Tilo Wendler, Jürgen Pilz, M. Glos, T. Penzel

2017

Abstract

In this paper, we shall introduce an algorithm that classifies EEG data into five sleep stages, relying only on two-channel sleep measurements. The sleep of a patient (divided into intervals of 30 seconds) is assumed to be a Markov chain on the five-element state space of sleep stages and our aim is to compute the most probable chain of this hidden Markov model by a maximum a posteriori (MAP) estimation in the Bayesian framework. Both the prior distribution of the chains and the likelihood model have to be trained on manual classifications made by professionals. For this purpose, the data is first preprocessed by a Fourier transform, a log transform and a principal component analysis for dimensionality reduction. Since the number of possible chains is immense (roughly 10^335), a heuristic approach for the computation of the MAP estimator is introduced, that systematically discards unlikely chains. The sleep stage classification is then compared to the classification of a professional, who scores according to the AASM and uses a full polysomnography. The overall structure of the hypnogram can adequately be reconstructed with error rates around 25%.

References

  1. Anderer, P., Moreau, A., Woertz, M., Ross, M., Gruber, G., Parapatics, S., Loretz, E., Heller, E., Schmidt, A., Boeck, M., et al. (2010). Computer-assisted sleep classification according to the standard of the american academy of sleep medicine: validation study of the aasm version of the somnolyzer 24× 7. Neuropsychobiology, 62(4):250-264.
  2. Berry, R. B., Brooks, R., Gamaldo, C. E., Harding, S. M., Marcus, C., and Vaughn, B. (2012). The aasm manual for the scoring of sleep and associated events. Rules, Terminology and Technical Specifications, Darien, Illinois, American Academy of Sleep Medicine.
  3. Gudmundsson, S., Runarsson, T. P., and Sigurdsson, S. (2005). Automatic sleep staging using support vector machines with posterior probability estimates. In International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCAIAWTIC'06), volume 2, pages 366-372. IEEE.
  4. Kales, A., Rechtschaffen, A., University of California, L. A., and (U.S.), N. N. I. N. (1968). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Allan Rechtschaffen and Anthony Kales, editors. U. S. National Institute of Neurological Diseases and Blindness, Neurological Information Network Bethesda, Md.
  5. Koley, B. and Dey, D. (2012). An ensemble system for automatic sleep stage classification using single channel eeg signal. Computers in biology and medicine, 42(12):1186-1195.
  6. Liang, S.-F., Kuo, C.-E., Hu, Y.-H., and Cheng, Y.-S. (2012). A rule-based automatic sleep staging method. Journal of neuroscience methods, 205(1):169-176.
  7. Pan, S.-T., Kuo, C.-E., Zeng, J.-H., and Liang, S.-F. (2012). A transition-constrained discrete hidden markov model for automatic sleep staging. Biomedical engineering online, 11(1):1.
  8. Penzel, T. and Conradt, R. (2000). Computer based sleep recording and analysis. Sleep medicine reviews, 4(2):131-148.
  9. Redmond, S. and Heneghan, C. (2003). Electrocardiogrambased automatic sleep staging in sleep disordered breathing. In Computers in Cardiology, 2003, pages 609-612. IEEE.
  10. Tagliazucchi, E., von Wegner, F., Morzelewski, A., Borisov, S., Jahnke, K., and Laufs, H. (2012). Automatic sleep staging using fmri functional connectivity data. Neuroimage, 63(1):63-72.
  11. Wang, Y., Loparo, K. A., Kelly, M. R., and Kaplan, R. F. (2015). Evaluation of an automated single-channel sleep staging algorithm. Nature and science of sleep, 7:101.
  12. Zibrandtsen, I., Kidmose, P., Otto, M., Ibsen, J., and Kjaer, T. (2016). Case comparison of sleep features from ear-eeg and scalp-eeg. Sleep Science.
Download


Paper Citation


in Harvard Style

Riazy S., Wendler T., Pilz J., Glos M. and Penzel T. (2017). Heuristic Approximation of the MAP Estimator for Automatic Two-channel Sleep Staging . In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017) ISBN 978-989-758-212-7, pages 236-241. DOI: 10.5220/0006242802360241


in Bibtex Style

@conference{biosignals17,
author={Shirin Riazy and Tilo Wendler and Jürgen Pilz and M. Glos and T. Penzel},
title={Heuristic Approximation of the MAP Estimator for Automatic Two-channel Sleep Staging},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017)},
year={2017},
pages={236-241},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006242802360241},
isbn={978-989-758-212-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2017)
TI - Heuristic Approximation of the MAP Estimator for Automatic Two-channel Sleep Staging
SN - 978-989-758-212-7
AU - Riazy S.
AU - Wendler T.
AU - Pilz J.
AU - Glos M.
AU - Penzel T.
PY - 2017
SP - 236
EP - 241
DO - 10.5220/0006242802360241