site of the Structural Genomics Consortium (Ng et al.,
2016). More experiments can be carried out using
different protein solutions to confirm the number of
frames required to accurately predict the final
outcome of a time-course in the future. Moreover,
details about the protein solutions also can be used
along with the frame labels in order to confirm the
prediction accuracy.
REFERENCES
Babcock, B., Datar, M. & Motwani, R. 2002. Sampling
from a moving window over streaming data.
Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms. San Francisco,
California: Society for Industrial and Applied
Mathematics.
Buchala, S. & Wilson, J. C. 2008. Improved classification
of crystallization images using data fusion and multiple
classifiers. Acta Crystallographica Section D, 64, 823-
833.
Cumbaa, C. & Jurisica, I. 2005. Automatic classification
and pattern discovery in high-throughput protein
crystallization trials. J Struct Funct Genomics, 6, 195-
202.
Dessau, M. A. & modis, Y. 2011. Protein crystallization for
X-ray crystallography. JoVE (Journal of Visualized
Experiments), e2285-e2285.
Dietterich, T. G. 2002. Machine learning for sequential
data: A review. Structural, syntactic, and statistical
pattern recognition. Springer.
Gama, J., Sebastião, R. & RODRIGUES, P. P. 2013. On
evaluating stream learning algorithms. Machine
Learning, 90, 317-346.
Kotseruba Y, Cumbaa, C. A. & Jurisica, I. 2012. High-
throughput protein crystallization on the World
Community Grid and the GPU. Journal of Physics:
Conference Series, 341, 012027.
Lekamge, B. M. T., Sowmya, A., Mele, K., Fazio, V. J. &
Newman, J. 2013. Classification of protein
crystallisation images using texture-based statistical
features. AIP Conference Proceedings, 1559, 270-276.
Lekamge, B. M. T., Sowmya, A. & Newman, J. 2016.
Multi-view Learning for Classification of X-Ray
Crystallography Images. Machine Learning and Data
Mining in Pattern Recognition. Springer.
Li, J., Maier, D., Tufte, K., Papadimos, V. & Tucker, P. A.
2005. No pane, no gain: efficient evaluation of sliding-
window aggregates over data streams. SIGMOD Rec.,
34, 39-44.
Mele, K., Lekamge, B. T., Fazio, V. J. & Newman, J. 2013.
Using Time Courses To Enrich the Information
Obtained from Images of Crystallization Trials. Crystal
Growth & Design, 14, 261-269.
Newman, J., Xu, J. & Willis, M. C. 2007. Initial evaluations
of the reproducibility of vapor-diffusion crystallization.
Acta Crystallographica Section D, 63, 826-832.
Ng, J. T., Dekker, C., Reardon, P. & Von Delft, F. 2016.
Lessons from ten years of crystallization experiments at
the SGC.
Acta Crystallographica Section D: Structural
Biology, 72, 224-235.
Vallotton, P., Sun, C., Lovell, D., Fazio, V. J. & Newman,
J. 2010. DroplIT, an improved image analysis method
for droplet identification in high-throughput
crystallization trials. Journal of Applied
Crystallography, 43, 1548-1552.
Walker, C. G., Foadi, J. & Wilson, J. 2007. Classification
of protein crystallization images using Fourier
descriptors. Journal of Applied Crystallography, 40,
418-426.
Watts, D., Cowtan, K. & Wilson, J. 2008. Automated
classification of crystallization experiments using
wavelets and statistical texture characterization
techniques. Journal of Applied Crystallography, 41, 8-
17.
Wilson, J. C. & Wilson, J. C. 2006. Automated
Classification of Images from Crystallisation
Experiments. In: Perner, P. & Perner, P. (eds.)
Advances in Data Mining: Applications in Medicine,
Web Mining, Marketing, Image and Signal Mining.
Springer Berlin / Heidelberg.
Yang, X., Chen, W., Zheng, Y. & Jiang, T. 2006. Image-
Based Classification for Automating Protein Crystal
Identification. In: Huang, D.-S., LI, K. & Irwin, G.
(eds.) Intelligent Computing in Signal Processing and
Pattern Recognition. Springer Berlin Heidelberg.