Temporal Isolation Among LTE/5G Network Functions by Real-time Scheduling

Tommaso Cucinotta, Mauro Marinoni, Alessandra Melani, Andrea Parri, Carlo Vitucci

2017

Abstract

Radio access networks for future LTE/5G scenarios need to be designed so as to satisfy increasingly stringent requirements in terms of overall capacity, individual user performance, flexibility and power efficiency. This is triggering a major shift in the Telcom industry from statically sized, physically provisioned network appliances towards the use of virtualized network functions that can be elastically deployed within a flexible private cloud of network operators. However, a major issue in delivering strong QoS levels is the one to keep in check the temporal interferences among co-located services, as they compete in accessing shared physical resources. In this paper, this problem is tackled by proposing a solution making use of a real-time scheduler with strong temporal isolation guarantees at the OS/kernel level. This allows for the development of a mathematical model linking major parameters of the system configuration and input traffic characterization with the achieved performance and response-time probabilistic distribution. The model is verified through extensive experiments made on Linux on a synthetic benchmark tuned according to data from a real LTE packet processing scenario.

References

  1. (2015). Cloud RAN - Ericsson White Paper. www.ericsson.com/res/docs/whitepapers/wpcloud-ran.pdf.
  2. (2015). Common Public Radio Interface (CPRI) v7.0 - Interface Specification. http://www.cpri.info/ downloads/CPRI_v_7_0_2015-10-09.pdf.
  3. (2016). Cisco 5G Vision Series: Small Cell Evolution. Cisco Whitepaper.
  4. Abeni, L. and Buttazzo, G. (1998). Integrating multimedia applications in hard real-time systems. In Proc. IEEE Real-Time Systems Symposium, pages 4-13, Madrid, Spain.
  5. Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., Lee, G., Patterson, D. A., Rabkin, A., Stoica, I., and Zaharia, M. (2009). Above the clouds: A berkeley view of cloud computing. Technical Report UCB/EECS-2009-28, EECS Department, University of California, Berkeley.
  6. Benini, L., Bogliolo, A., and Micheli, G. D. (2000). A survey of design techniques for system-level dynamic power management. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 8(3):299-316.
  7. Costa-Perez, X., Swetina, J., Guo, T., Mahindra, R., and Rangarajan, S. (2013). Radio access network virtualization for future mobile carrier networks. IEEE Communications Magazine, 51(7):27-35.
  8. Easwaran, A. and Andersson, B. (December 2009). Resource sharing in global fixed-priority preemptive multiprocessor scheduling. In Proceedings of the 30th IEEE Real-Time Systems Symposium (RTSS), Washington, DC, USA.
  9. Feng, X. and Mok, A. K. (December 2002). A model of hierarchical real-time virtual resources. In Proceedings of the 23rd IEEE Real-Time Systems Symposium (RTSS), Austin, TX, USA.
  10. Fiorani, M., Skubic, B., Ma°rtensson, J., Valcarenghi, L., Castoldi, P., Wosinska, L., and Monti, P. (2015). On the design of 5G transport networks. Photonic Network Communications, 30(3):403-415.
  11. Goossens, J., Funk, S., and Baruah, S. (2003). Prioritydriven scheduling of periodic task systems on multiprocessors. Real-Time Systems, 25(2):187-205.
  12. Gross, D., Shortle, J. F., Thompson, J. M., and Harris, C. M. (2008). Fundamentals of Queueing Theory. WileyInterscience, 4th edition.
  13. Haberland, B., Derakhshan, F., Grob-Lipski, H., Klotsche, R., Rehm, W., Schefczik, P., and Soellner, M. (2013). Radio base stations in the cloud. Bell Labs Technical Journal, 18(1):129-152.
  14. Hawilo, H., Shami, A., Mirahmadi, M., and Asal, R. (2014). NFV: state of the art, challenges, and implementation in next generation mobile networks (vepc). IEEE Network, 28(6):18-26.
  15. Jansen, P. G. and Mullender, S. (2003). Real-time in plan 9 : a short overview.
  16. Kendall, D. G. (1953). Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded markov chain. The Annals of Mathematical Statistics, 24(3):338-354.
  17. Lelli, J., Scordino, C., Abeni, L., and Faggioli, D. (2016). Deadline scheduling in the linux kernel. Software: Practice and Experience, 46(6):821-839.
  18. Liu, C. L. and Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a hard-real-time environment. Journel of the ACM, 20(1):46-61.
  19. López-Pérez, D., Ding, M., Claussen, H., and Jafari, A. H. (2015). Towards 1 gbps/ue in cellular systems: Understanding ultra-dense small cell deployments. IEEE Communications Surveys Tutorials, 17(4):2078-2101.
  20. Maaref, A., Ma, J., Salem, M., Baligh, H., and Zarin, K. (2014). Device-centric radio access virtualization for 5g networks. In 2014 IEEE Globecom Workshops (GC Wkshps), pages 887-893.
  21. Mercer, C. W., Savage, S., and Tokuda, H. (1993). Processor Capacity Reserves: An Abstraction for Managing Processor Usage. In Proc. 4th Workshop on Workstation Operating Systems.
  22. NFV Industry Specif. Group (2012). Network Functions Virtualisation. Introductory White Paper.
  23. Nguyen, V.-G., Do, T.-X., and Kim, Y. (2016). Sdn and virtualization-based lte mobile network architectures: A comprehensive survey. Wireless Personal Communications, 86(3):1401-1438.
  24. Pichon, D. (2014). Mobile Cloud Networking FP7 European Project: Radio Access Network as a Service. 4th Workshop on Mobile Cloud Networking. Available at: http://docplayer.net/3714038-Mobilecloud-networking-fp7-european-projectradio-access-network-as-a-service.html.
  25. Rajkumar, R., Juvva, K., Molano, A., and Oikawa, S. (January 1998). Resource kernels: A resourcecentric approach to real-time and multimedia systems. In SPIE/ACM Conference on Multimedia Computing and Networking, San Jose, CA, USA.
  26. Sama, M. R., Contreras, L. M., Kaippallimalil, J., Akiyoshi, I., Qian, H., and Ni, H. (2015). Software-defined control of the virtualized mobile packet core. IEEE Communications Magazine, 53(2):107-115.
  27. Shin, I., Easwaran, A., and Lee, I. (July 2008). Hierarchical scheduling framework for virtual clustering of multiprocessors. In 20th Euromicro Conference on RealTime Systems (ECRTS), Prague, Czech Republic.
  28. Vitucci, C., Lelli, J., Parri, A., and Marinoni, M. (2014). A Linux-based Virtualized Solution Providing Computing Quality of Service to SDN-NFV Telecommunication Applications. In Proceedings of the 16th Real Time Linux Workshop (RTLWS 2014), pages 12-13, Dusseldorf, Germany.
  29. Zaki, Y., Weerawardane, T., Gorg, C., and Timm-Giel, A. (May 2011). Multi-qos-aware fair scheduling for LTE. In 73rd IEEE Vehicular technology conference (VTCSpring), Budapest, Hungary.
Download


Paper Citation


in Harvard Style

Cucinotta T., Marinoni M., Melani A., Parri A. and Vitucci C. (2017). Temporal Isolation Among LTE/5G Network Functions by Real-time Scheduling . In Proceedings of the 7th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER, ISBN 978-989-758-243-1, pages 368-375. DOI: 10.5220/0006246703680375


in Bibtex Style

@conference{closer17,
author={Tommaso Cucinotta and Mauro Marinoni and Alessandra Melani and Andrea Parri and Carlo Vitucci},
title={Temporal Isolation Among LTE/5G Network Functions by Real-time Scheduling},
booktitle={Proceedings of the 7th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER,},
year={2017},
pages={368-375},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006246703680375},
isbn={978-989-758-243-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER,
TI - Temporal Isolation Among LTE/5G Network Functions by Real-time Scheduling
SN - 978-989-758-243-1
AU - Cucinotta T.
AU - Marinoni M.
AU - Melani A.
AU - Parri A.
AU - Vitucci C.
PY - 2017
SP - 368
EP - 375
DO - 10.5220/0006246703680375