and Otis Chodosh brought up the intuitive view to
mean curvature on Math Overflow site on 2012.
REFERENCES
Crane, K., de Goes, F., Desbrun, M., and Schr
¨
oder, P.
(2013). Digital geometry processing with discrete ex-
terior calculus. In ACM SIGGRAPH 2013 Courses,
SIGGRAPH ’13, pages 7:1–7:126, New York, NY,
USA. ACM.
Dorst, L., Fontijne, D., and Mann, S. (2007). Geometric
Algebra for Computer Science: An Object-Oriented
Approach to Geometry. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1st edition.
Golub, G. H. and Van Loan, C. F. (1996). Matrix Com-
putations (3rd Ed.). Johns Hopkins University Press,
Baltimore, MD, USA.
Jin, S., Lewis, R., and West, D. (2005). A comparison of
algorithms for vertex normal computation. The Visual
Computer, 21:71–82.
Lee, J., Nishikawa, R. M., Reiser, I., Boone, J. M., and
Lindfors, K. K. (2015). Local curvature analysis for
classifying breast tumors: Preliminary analysis in de-
dicated breast ct. Medical Physics, 42(9).
Max, N. (1999). Weights for computing vertex normals
from facet normals. Journal of Graphics Tools, 4(2).
Mesmoudi, M. M., De Floriani, L., and Magillo, P. (2012).
Discrete curvature estimation methods for triangula-
ted surfaces. In Applications of Discrete Geometry
and Mathematical Morphology, pages 28–42. Sprin-
ger.
Meyer, M., Desbrun, M., Schr
¨
oder, P., and Barr, A. H.
(2003). Visualization and Mathematics III, chapter
Discrete Differential-Geometry Operators for Trian-
gulated 2-Manifolds, pages 35–57. Springer Berlin
Heidelberg, Berlin, Heidelberg.
Mitra, N. J. and Nguyen, A. (2003). Estimating surface
normals in noisy point cloud data. In Proceedings of
the Nineteenth Annual Symposium on Computational
Geometry, SCG03, pages 322–328, New York, NY,
USA. ACM.
Nevalainen, P., Middleton, M., Kaate, I., Pahikkala, T., Su-
tinen, R., and Heikkonen, J. (2015). Detecting stony
areas based on ground surface curvature distribution.
In 2015 International Conference on Image Proces-
sing Theory, Tools and Applications, IPTA 2015, Orle-
ans, France, November 10-13, 2015, pages 581–587.
Nevalainen, P., Middleton, M., Sutinen, R., Heikkonen, J.,
and Pahikkala, T. (2016). Detecting terrain stoniness
from airborne laser scanning data . Remote Sensing,
8(9):720.
Pierzchala, M., Talbot, B., and Astrup, R. (2016). Mea-
suring wheel ruts with close-range photogrammetry.
Forestry, 89(4):383–391.
Pressley, A. (2010). Elementary Differential Geometry.
Springer Undergraduate Mathematics Series. Springer
London.
Rusinkiewicz, S. (2004). Estimating curvatures and their
derivatives on triangle meshes. In Symposium on 3D
Data Processing, Visualization, and Transmission.
Schaer, P., Skaloud, J., Landtwing, S., and Legat, K. (2007).
Accuracy Estimation for Laser Point Cloud Including
Scanning Geometry. In Mobile Mapping Symposium
2007, Padova.
Theisel, H., R
¨
ossl, C., Zayer, R., and Seidel, H. P. (2004).
Normal based estimation of the curvature tensor for
triangular meshes. In In PG04: Proceedings of the
Computer Graphics and Applications, 12th Pacific
Conference on (PG2004), pages 288–297. IEEE Com-
puter Society.
van Oosterom, A. and Strackee, J. (1983). A solid angle of a
plane triangle. IEEE Trans. Biomed. Eng., 30(2):125–
126.
Vranic, D. V. and Saupe, D. (2001). 3d shape descriptor
based on 3d fourier transform. In Fazekas, K., edi-
tor, 3D Shape Descriptor Based on 3D Fourier Trans-
form In Proceedings of the EURASIP Conference on
Digital Signal Processing for Multimedia Communi-
cations and Services (ECMCS 2001), pages 271–274.
Wardetzky, M., Mathur, S., Kaelberer, F., and Grinspun, E.
(2007). Discrete laplace operators: No free lunch. In
Belyaev, A. and Garland, M., editors, Geometry Pro-
cessing. The Eurographics Association.
Yang, P. and Qian, X. (2007). Direct computing of surface
curvatures for point-set surfaces. In SPBG’07, pages
29–36.
ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods
692