This work has been supported by an ERC Starting
Grant of the European Research Council (EU Hori-
zon 2020): The Hands that Wrote the Bible: Digital
Palaeography and Scribal Culture of the DSS (Hand-
sandBible # 640497). Additional support comes from
NWO (Netherlands Organisation for Scientific Re-
search) and FWO (the Research Foundation Flan-
ders): Models of Textual Communities and Digital
Palaeography of the DSS (# 326-25-001).
REFERENCES
Adak, C. and Chaudhuri, B. B. (2015). Writer identification
from offline isolated bangla characters and numerals.
In ICDAR, pages 486–490. IEEE.
Baird, H. S. (1992). Document image defect models. In
Structured Document Image Analysis, pages 546–556.
Springer.
Belongie, S., Malik, J., and Puzicha, J. (2002). Shape
matching and object recognition using shape contexts.
IEEE PAMI, 24(4):509–522.
Benhamou, S. (2004). How to reliably estimate the tortu-
osity of an animal’s path: straightness, sinuosity, or
fractal dimension? Theoretical Biology, 229(2).
Brink, A., Smit, J., Bulacu, M., and Schomaker, L. (2012).
Writer identification using directional ink-trace width
measurements. PR, 45(1):162–171.
Bulacu, M. and Schomaker, L. (2007). Text-independent
writer identification and verification using textural and
allographic features. IEEE PAMI, 29(4):701–717.
Bulacu, M., Schomaker, L., and Brink, A. (2007). Text-
independent writer identification and verification on
offline arabic handwriting. In ICDAR, volume 2,
pages 769–773. IEEE.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR.
Fisher, R. A. (1925). Statistical methods for research work-
ers. Genesis Publishing Pvt Ltd.
Ha, T. M. and Bunke, H. (1997). Off-line, handwritten
numeral recognition by perturbation method. IEEE
PAMI, 19(5):535–539.
He, S., Samara, P., Burgers, J., and Schomaker, L. (2016).
A multiple-label guided clustering algorithm for his-
torical document dating and localization. IEEE Trans-
actions on Image Processing, 25(11):5252–5265.
He, S. and Schomaker, L. (2014). Delta-n hinge: Rotation-
invariant features for writer identification. In ICPR,
pages 2023–2028.
He, S. and Schomaker, L. (2016). Writer identification us-
ing curvature-free features. PR.
He, S. and Schomaker, L. (2017). Beyond ocr: Multi-
faceted understanding of handwritten document char-
acteristics. PR, 63:321–333.
He, S., Wiering, M., and Schomaker, L. (2015). Junction
detection in handwritten documents and its applica-
tion to writer identification. PR, 48(12):4036–4048.
Ito, S. and Kubota, S. (2010). Object classification us-
ing heterogeneous co-occurrence features. In Euro-
pean Conference on Computer Vision, pages 701–714.
Springer.
Karunakara, K. and Mallikarjunaswamy, B. (2011). Writer
identification based on offline handwritten document
images in kannada language using empirical mode de-
composition method. Writer, 30(6).
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. Nature, 521(7553):436–444.
Leuzzi, F., Tessitore, G., Delfino, S., Fusco, C., Gneo, M.,
and Zambonini, G. (2016). A statistical approach to
speaker identification in forensic phonetics field.
Li, Y., Wang, S., Tian, Q., and Ding, X. (2015). Feature
representation for statistical-learning-based object de-
tection: A review. PR, 48(11):3542–3559.
Lim, T. and Alexander, P. (1995). Volume 1. In The Dead
Sea Scrolls Electronic Library. Brill.
Long, M. and Wang, J. (2015). Learning transferable
features with deep adaptation networks. CoRR,
abs/1502.02791, 1:2.
Mikolajczyk, K. and Schmid, C. (2005). A perfor-
mance evaluation of local descriptors. IEEE PAMI,
27(10):1615–1630.
Monk (2016). Medieval palaeographic scale data set (online
collection).
Otsu, N. (1975). A threshold selection method from gray-
level histograms. Automatica, 11(285-296):23–27.
Plamondon, R. and Lorette, G. (1989). Automatic signature
verification and writer identification - the state of the
art. Pattern recognition, 22(2):107–131.
Popovi
´
c, M. (2012). Qumran as scroll storehouse in times
of crisis? a comparative perspective on judaean desert
manuscript collections 1. Journal for the Study of Ju-
daism, 43(4-5):551–594.
Popovi
´
c, M. (2015). The ancient ‘library’ of qumran be-
tween urban and rural culture. In The Dead Sea Scrolls
at Qumran and the Concept of a Library, pages 155–
167. Brill.
Prasad, D. K., Quek, C., Leung, M. K., and Cho, S.-Y.
(2011). A parameter independent line fitting method.
In ACPR, pages 441–445.
Qi, X., Xiao, R., Li, C.-G., Qiao, Y., Guo, J., and Tang,
X. (2014). Pairwise rotation invariant co-occurrence
local binary pattern. IEEE PAMI, 36(11):2199–2213.
Schomaker, L. (2016). Design considerations for a large-
scale image-based text search engine in historical
manuscript collections. it-Information Technology,
58(2):80–88.
Schomaker, L. and Bulacu, M. (2004). Automatic writer
identification using connected-component contours
and edge-based features of uppercase western script.
IEEE PAMI, 26(6):787–798.
Shor, P., Manfredi, M., Bearman, G. H., Marengo, E.,
Boydston, K., and Christens-Barry, W. A. (2014). The
leon levy dead sea scrolls digital library: The digitiza-
tion project of the dead sea scrolls. Journal of East-
ern Mediterranean Archaeology and Heritage Studies,
2(2):71–89.
A Digital Palaeographic Approach towards Writer Identification in the Dead Sea Scrolls
701