improved by incorporating pixel info rmation present
in p revious slice and next slice in MRI volume d ata.
The performance of our method is evaluated on 80
patients of BRATS 20 12 training dataset and comp a-
red with other existing segmentation techniques. The
results demonstrate tha t our method outperfor ms the
other brain tumor segmentation algorithm. The per-
formance of the proposed algorithm is also compared
by varying window sizes i. e. voxel with different di-
mensions and it can be conclu ded that best results are
obtained for (3 × 3 × 3) wind ow. In future, segmen-
tation accuracy can be improved by delineating mor e
accurate boundary using T1c MRI volume data which
differentiates tumor boundary with non tumor tissue.
ACKNOWLEDGEMENTS
This research work ha s been suppor te d by Visvesva-
raya PhD sche me of Ministry of Electronics & Infor-
mation Technology, Government of India.
REFERENCES
Berry, M. W., Browne, M., Langville, A. N., Pauca, V. P.,
and Plemmons, R. J. (2007). Algorithms and appli-
cations for approximate nonnegative matrix factori-
zation. Computational Statistics and Data Analysis,
52(1):155–173.
Cichocki, A., Zdunek, R., Phan, A. H., and Amari, S. I.
(2009). Nonnegative Matrix and Tensor Factoriza-
tions: Applications to Exploratory Multi-Way Data
Analysis and Blind Source Separation.
Corso, J. J., Sharon, E., Dube, S., El-Saden, S., Sinha,
U., and Yuille, A. (2008). Efficient multilevel brain
tumor segmentation wit h integrated bayesian model
classification. IEEE Transactions on Medical Ima-
ging, 27(5):629–640.
Dera, D. (2015). Level Set Segmentation using Non-
Negative Matrix Factorization of Brain MRI Images.
E. Geremia, B. M. and Ayache, N. (2012). Spatial decision
forests for glioma segmentation in multi-channel mr
images. Proc.MICCAI-BRATS, pages 14–18.
Gordillo, N., Montseny, E., and Sobrevilla, P. (2013). State
of the art survey on MRI brain tumor segmentation.
Magnetic Resonance Imaging, 31(8):1426–1438.
Hamamci, A. and Unal, G. (2012). Multimodal brain tumor
segmentation using the ”tumor-cut” method on the
brats dataset. Proc.MICCAI-BRATS, pages 19–23.
Hosseini-asl, E., Zurada, J. M., and El-baz, A. (2014). Lung
Segmentation Based on Nonnegative Matrix Factori-
zation Electrical and Computer Engineering Depart-
ment , University of Louisville , Louisville , K Y
, USA . Bioengineering Department , University of
Louisville , Louisville , KY , USA . Information Tech.
(502):877–881.
Kim, H . and Park, H. (2008). N onnegative matrix factori-
zation based on alternating nonnegativity constrained
least squares and active set method. SIAM Journal on
Matrix Analysis and Applications, 30(2):713–730.
Lee, D. D. and Seung, H. S. (2000). 401788a0. 401(October
1999):788–791.
Menze, B . H., Jakab, A., Bauer, S., Kalpathy-Cramer, J.,
Farahani, K., Kirby, J., Burren, Y., Porz, N., Slot-
boom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber,
M. A., Arbel, T., Avants, B. B., Ayache, N., Buendia,
P., Collins, D. L., Cordier, N., Corso, J. J., Criminisi,
A., Das, T., Delingette, H., Demiralp, ., Durst, C. R.,
Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia,
E., Glocker, B., Golland, P., Guo, X., Hamamci, A.,
Iftekharuddin, K. M., Jena, R., John, N. M., Konu-
koglu, E., Lashkari, D., Mariz, J. A., Meier, R., Pe-
reira, S., Precup, D., Price, S. J., Raviv, T. R., Reza,
S. M. S., Ryan, M., Sarikaya, D., Schwartz, L., S hin,
H. C., Shotton, J., Silva, C. A., Sousa, N., Subbanna,
N. K., Szekely, G., Taylor, T. J., Thomas, O. M., Tus-
tison, N. J., Unal, G., Vasseur, F., Wintermark, M.,
Ye, D. H., Zhao, L., Zhao, B., Zikic, D., Prastawa,
M., Reyes, M., and Leemput, K. V. (2015). The
multimodal brain tumor i mage segmentation bench-
mark (brats). IEEE Transactions on Medical Imaging,
34(10):1993–2024.
Menze, B. H., Leemput, K. V., Lashkari, D., Weber, M. A.,
Ayache, N., and Golland, P. (2012). Segmenting gli-
oma in multi-modal images using a generative model
for brain lesion segmentation. Proc.MICCAI-BRATS,
pages 49–55.
S. Bauer, T. Fejes, J. S. R. W. L. P. N. and Reyes, M.
(2012). Segmentation of brain tumor images based
on integrated hierarchical classification and regulari-
zation. Proc.MICCAI-BRATS, pages 10–13.
Sandler, R. and Lindenbaum, M. (2011). Nonnegative ma-
trix factorization with earth mover’s distance metri c
for image analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(8):1590–1602.
T. Riklin Raviv, K. V. L. and Menze, B. H. (2012). Multi-
modal brain tumor segmentation via latent atlases.
Proc.MICCAI-BRATS, pages 64–73.
Tusti son, N. and Gee, J. (2010). N4itk: Nick’s n3 itk imple-
mentation for mri bias field correction.
Xie, Y., Ho, J., and Vemuri, B. C. (2011). Nonnegative
factorization of diff usion tensor images and its appli-
cations. LNCS, 6801:550–561.
Zikic, D., Glocker, B., Konukoglu, E., Shotton, J., Crimi-
nisi, A., Ye, D. H., Demiralp, C., Thomas, O. M., Das,
T., Jena, R., and Price, S. J. (2012). Context-sensitive
classification forests for segmentation of brain tumor
tissues. Proc.MICCAI-BRATS, pages 1–9.