REFERENCES
Akdogan, E. and Adli, M. A. (2011). The design and control
of a therapeutic exercise robot for lower limb rehabili-
tation: Physiotherabot. Mechatronics, 21(3):509–522.
American Academy of Orthopaedic Surgeons (2011).
Sports Medicine Media Guide an Illustrated Resource
on the Most Common Injuries and Treatments in
Sports.
Arosha Senanayake, S. M. N., Malik, O. A., Iskandar, P. M.,
and Zaheer, D. (2014). A knowledge-based intelli-
gent framework for anterior cruciate ligament rehabil-
itation monitoring. Applied Soft Computing Journal,
20:127–141.
Augusta, V. (2013). Comparaci
´
on entre diferentes proced-
imientos de ajuste de controladores PID. I. Valores
m
´
aximos de la variable controlada y de la se
˜
nal regu-
ladora.
Biometrics Ltd (1998). Goniometer and torsiometer oper-
ating manual. Technical report.
Blaya, J. a. and Herr, H. (2004). Adaptive Control of
a Variable-Impedance Ankle-Foot Orthosis to Assist
Drop-Foot Gait. IEEE Transactions on Neural Sys-
tems and Rehabilitation Engineering, 12(1):24–31.
Cimino, F., Volk, B. S., and Setter, D. (2010). Anterior
cruciate ligament injury: Diagnosis, management, and
prevention. American Family Physician, 82(8):917–
922.
De Leva, P. (1996). Adjustments to zatsiorsky-seluyanov’s
segment inertia parameters. Journal of Biomechanics,
29(9):1223–1230.
Departamento Administrativo Nacional de Estad
´
ısctica
(2004). Informaci
´
on estad
´
ıstica de la discapacidad.
Dollar, A. M. and Herr, H. (2008). Lower extremity
exoskeletons and active orthoses: Challenges and
state-of-the-art. IEEE Transactions on Robotics,
24(1):144–158.
Eby, W. R. (2005). Feasibility Analysis of a Powered
Lower-Limb Orthotic for the Mobility Impaired User
by. Simulation.
Eurostat (2014). Disability statistics - prevalence and de-
mographics. 2011(September):1–5.
Ganley, T. J. (2011). Preface: ACL Injuries in the Young
Athlete: A Focus on Prevention and Treatment. Clin-
ics in Sports Medicine, 30(4):xv–xviii.
Guizzo, E. and Goldstein, H. (2005). The rise of the
body bots [robotic exoskeletons. IEEE Spectrum,
42(10):50–56.
K. S. Fu, R.C. Gonzalez, C. L. (1987). Robotics: Control,
Sensing, Vision, and Intelligence. Mcgraw-Hill Book
Company.
Kiguchi, K., Tanaka, T., and Fukuda, T. (2004). Neuro-
fuzzy control of a robotic exoskeleton with EMG
signals. IEEE Transactions on Fuzzy Systems,
12(4):481–490.
Kirby, F. (2016). Simulaci
´
on de los algoritmos de control
de un sistema de rehabilitaci
´
on de miembro inferior
(LegSys). Master’s thesis, Universidad Pontificia Bo-
livariana.
Lasso, I. L., Masso, M., and Vivas, O. A. (2010). Ex-
oesqueleto para reeducaci
´
on muscular en pacientes
con IMOC tipo diplej
´
ıa esp
´
astica moderada. pages
1 – 88.
Li, A. Y. and Ng, G. Y. (2004). Overview of Anterior Cruci-
ate Ligament Rehabilitation and its Evolution in Hong
Kong in the Past 8 Years. Hong Kong Physiotherapy
Journal, 22(1):14–21.
Machhindra, V., Lal, H., Chowdhury, B., Dev, C., Meena,
S., and Kumar, K. (2016). ScienceDirect Arthroscopic
anatomic double bundle anterior cruciate ligament re-
construction : Our experience with follow-up of 4
years. 7:3–8.
Nancy Berryman, W. D. B. P. (2002). Joint Range of Motion
and Muscle Length Testing. 1st edition.
Nguyen-Tuong, D. and Peters, J. (2008). Learning robot dy-
namics for computed torque control using local Gaus-
sian processes regression. Proceedings of the 2008
ECSIS Symposium on Learning and Adaptive Behav-
iors for Robotic Systems, LAB-RS 2008, pages 59–64.
Olaya, A. R. (2008). Sistema rob
´
otico multimodal para
an
´
alisis y estudios en biomec
´
anica, movimiento hu-
mano y control neuromotor. pages 1–256.
Pan, D., Gao, F., Miao, Y., and Cao, R. (2015). Co-
simulation research of a novel exoskeleton-human
robot system on humanoid gaits with fuzzy-PID/PID
algorithms. Advances in Engineering Software,
79:36–46.
Pati
˜
no, J. G., Bravo, E. E., Perez, J. J., and Perez, V.
(2013). Lower limb rehabilitation system controlled
by robotics, electromyography surface and functional
electrical stimulation. Pan American Health Care Ex-
changes, PAHCE, (2002):6257.
Piriyaprasarth, P., Morris, M. E., Winter, A., and Bialo-
cerkowski, A. E. (2008). The reliability of knee joint
position testing using electrogoniometry. BMC mus-
culoskeletal disorders, 9:6.
Plagenhoef, S., Evans, F. G., and Abdelnour, T. (1983).
Anatomical Data for Analyzing Human Motion. Re-
search Quarterly for Exercise and Sport, 54(2):169–
178.
Pratt, J., Krupp, B., Morse, C., and Collins, S. (2004). The
RoboKnee: an exoskeleton for enhancing strength and
endurance during walking. IEEE International Con-
ference on Robotics and Automation, 2004. Proceed-
ings. ICRA ’04. 2004, 3(April):2430–2435.
World Health Organization (2011). World Report on Dis-
ability. Technical report, World Health Organization,
Ginebra.
Yan, T., Cempini, M., Oddo, C. M., and Vitiello, N. (2015).
Review of assistive strategies in powered lower-limb
orthoses and exoskeletons. Robotics and Autonomous
Systems, 64:120–136.
Zoss, A. B., Kazerooni, H., and Chu, A. (2006). Biome-
chanical Design of the Berkeley Lower Extremity Ex-
oskeletong (BLEEX). IEEE/ASME Transactions on
Mechatronics, 11(2):128–138.
BIODEVICES 2017 - 10th International Conference on Biomedical Electronics and Devices
80