criminal behavior in this region.
Figure 6: Crime rates of the DP1 and their location.
5 CONCLUSION
CrimeVis offers a set of tools to support researchers
on public safety. The overview provided by the tool
allows users to easily discover patterns and analyze
trends in the data being investigated. The software
is still undergoing testing to be deployed and widely
used by researchers in the field. Our preliminary stud-
ies showed that CrimeVis is efficient when it is nec-
essary to analyze a data set for a specific time period.
The users could easily establish relations between the
data and identify trends and patterns through interac-
tive analysis of the data. Moreover, the brushing and
linking technique allows us to select and filter infor-
mations more easily, being a powerful technique to
answer questions relevant to how the relation between
different data attributes. With CrimeVis, we can ana-
lyze not only groups, but also individual areas using
the map of DPs, in which it is possible to interpret the
evolution of a certain attribute over time.
REFERENCES
Arietta, S. M., Efros, A. A., Ramamoorthi, R., and
Agrawala, M. (2014). City forensics: Using visual
elements to predict non-visual city attributes. Visu-
alization and Computer Graphics, IEEE Transactions
on, 20(12):2624–2633.
Assunc¸
˜
ao, R. M., Neves, M. C., C
ˆ
amara, G., and
da Costa Freitas, C. (2006). Efficient regionalization
techniques for socio-economic geographical units us-
ing minimum spanning trees. International Journal of
Geographical Information Science, 20(7):797–811.
Bach, B., Dragicevic, P., Archambault, D., Hurter, C., and
Carpendale, S. (2014). A review of temporal data vi-
sualizations based on space-time cube operations. In
Eurographics conference on visualization.
Chainey, S., Tompson, L., and Uhlig, S. (2008). The utility
of hotspot mapping for predicting spatial patterns of
crime. Security Journal, 21(1):4–28.
de Melo, B. M., Guimaraes, J. L., de Castro, A. S., San-
tos, C. A., Nascimento, D. M., and Del Pino Lino, A.
(2015). Criminal data mining: A case studyin crim-
inal observatory tapaj
´
os. In Information Systems and
Technologies (CISTI), 2015 10th Iberian Conference
on, pages 1–6. IEEE.
Hartigan, J. A. and Wong, M. A. (1979). Algorithm as 136:
A k-means clustering algorithm. Applied statistics,
pages 100–108.
Heer, J. and Shneiderman, B. (2012). Interactive dynam-
ics for visual analysis. Proceedings of the 26th ACM
Conference on Hypertext and Social Media, 10(2):30.
Heinrich, J., Luo, Y., Kirkpatrick, A. E., Zhang, H.,
and Weiskopf, D. (2011). Evaluation of a bundling
technique for parallel coordinates. arXiv preprint
arXiv:1109.6073.
Heinrich, J. and Weiskopf, D. (2013). State of the art of par-
allel coordinates. STAR Proceedings of Eurographics,
2013:95–116.
IBGE (2011). Censo demogr
´
afico 2010: Caracter
´
ısticas da
populac¸
˜
ao e dos domic
´
ılios: resultados do universo.
IBGE: Indicadores Sociais.
ISP-RJ (2013). Notas metod
´
ologicas do instituto de
seguranc¸a p
´
ublica do rio de janeiro.
Johansson, J., Ljung, P., Jern, M., and Cooper, M. (2005).
Revealing structure within clustered parallel coordi-
nates displays. In Information Visualization, 2005.
INFOVIS 2005. IEEE Symposium on, pages 125–132.
IEEE.
Kaufman, L. and Rousseeuw, P. J. (2009). Finding groups
in data: an introduction to cluster analysis, volume
344. John Wiley & Sons.
Lee, J. H., McDonnell, K. T., Zelenyuk, A., Imre, D., and
Mueller, K. (2014). A structure-based distance met-
ric for high-dimensional space exploration with mul-
tidimensional scaling. Visualization and Computer
Graphics, IEEE Transactions on, 20(3):351–364.
Monteiro, J. and Rocha, R. (2013). Tr
´
afico de drogas e
desempenho escolar no rio de janeiro. IBRE - Notas
t
´
ecnicas.
Palmas, G., Bachynskyi, M., Oulasvirta, A., Seidel, H. P.,
and Weinkauf, T. (2014). An edge-bundling layout
for interactive parallel coordinates. In Visualization
Symposium (PacificVis), 2014 IEEE Pacific, pages 57–
64. IEEE.
Power, D. J. (2014). Using ‘Big Data’ for analytics
and decision support. Journal of Decision Systems,
23(2):222–228.
Rougeux, N., Pry, C., Eder, D., Baker, Paul, B. J., and Velez,
J. P. (2012). Crime in chicago: An interactive analysis
of crime in chicago’s 50 wards.
Zhou, H., Yuan, X., Qu, H., Cui, W., and Chen, B. (2008).
Visual clustering in parallel coordinates. In Computer
Graphics Forum, volume 27, pages 1047–1054. Wiley
Online Library.
ICEIS 2017 - 19th International Conference on Enterprise Information Systems
200