Beaudet, P. (1978). Rotational invariant image operators.
Proceedings of the 4th International Conference on
Pattern Recognition, pages 579–583.
Canny, J. (1986). A computational approach to edge de-
tection. IEEE Transactions on Pattern Analysis and
Machine Intelligence.
F
¨
orstner, W. and G
¨
ulch, E. (1987). A Fast Operator for De-
tection and Precise Location of Distinct Points, Cor-
ners and Centres of Circular Features.
Grauman, K. and Leibe, B. (2011). Visual Object Recogni-
tion. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers.
Harris, C. and Stephens, M. (1988). A combined corner
and edge detector. In In Proc. of Fourth Alvey Vision
Conference, pages 147–151.
Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011).
Brisk: Binary robust invariant scalable keypoints. In
Proceedings of the 2011 International Conference on
Computer Vision, ICCV ’11, pages 2548–2555.
Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In Proceedings of the International
Conference on Computer Vision, ICCV ’99, pages
1150–1157.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International Journal of Com-
puter Vision, 60(2):91–110.
Mair, E., Hager, G. D., Burschka, D., Suppa, M., and
Hirzinger, G. (2010). Adaptive and generic corner de-
tection based on the accelerated segment test. In Pro-
ceedings of the 11th European Conference on Com-
puter Vision: Part II, pages 183–196.
Matas, J., Chum, O., Urban, M., and Pajdla, T. (2002). Ro-
bust wide baseline stereo from maximally stable ex-
tremal regions. In Proc. BMVC, pages 36.1–36.10.
doi:10.5244/C.16.36.
Mikolajczyk, K. and Schmid, C. (2002). An affine invariant
interest point detector. In Proceedings of the 7th Eu-
ropean Conference on Computer Vision-Part I, ECCV
’02, pages 128–142, London, UK, UK. Springer-
Verlag.
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A.,
Matas, J., Schaffalitzky, F., Kadir, T., and Gool, L. V.
(2005). A comparison of affine region detectors. In-
ternational Journal of Computer Vision, 65(1):43–72.
Morel, J.-M. and Yu, G. (2009). Asift: A new framework for
fully affine invariant image comparison. SIAM Jour-
nal on Imaging Sciences, 2(2):438–469.
Pablo Alcantarilla (Georgia Institute of Technology), Jesus
Nuevo (TrueVision Solutions AU), A. B. (2013). Fast
explicit diffusion for accelerated features in nonlinear
scale spaces. In Proceedings of the British Machine
Vision Conference. BMVA Press.
Pal, C. J., Weinman, J. J., Tran, L. C., and Scharstein, D.
(2012). On learning conditional random fields for
stereo - exploring model structures and approximate
inference. International Journal of Computer Vision,
99(3):319–337.
Pusztai, Z. and Hajder, L. (2016a). Quantitative Com-
parison of Feature Matchers Implemented in
OpenCV3. In Computer Vision Winter Work-
shop. vailable online at http://vision.fe.uni-
lj.si/cvww2016/proceedings/papers/04.pdf.
Pusztai, Z. and Hajder, L. (2016b). A turntable-based ap-
proach for ground truth tracking data generation. VIS-
APP, pages 498–509.
Rosten, E. and Drummond, T. (2005). Fusing points and
lines for high performance tracking. In In Internation
Conference on Computer Vision, pages 1508–1515.
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.
(2011). Orb: An efficient alternative to sift or surf.
In International Conference on Computer Vision.
Scharstein, D., Hirschm
¨
uller, H., Kitajima, Y., Krathwohl,
G., Nesic, N., Wang, X., and Westling, P. (2014).
High-resolution stereo datasets with subpixel-accurate
ground truth. In Pattern Recognition - 36th German
Conference, GCPR 2014, M
¨
unster, Germany, Septem-
ber 2-5, 2014, Proceedings, pages 31–42.
Scharstein, D. and Szeliski, R. (2002). A Taxonomy and
Evaluation of Dense Two-Frame Stereo Correspon-
dence Algorithms. International Journal of Computer
Vision, 47:7–42.
Scharstein, D. and Szeliski, R. (2003). High-accuracy
stereo depth maps using structured light. In CVPR
(1), pages 195–202.
Tomasi, C. and Shi, J. (1994). Good Features to Track. In
IEEE Conf. Computer Vision and Pattern Recognition,
pages 593–600.
Tuytelaars, T. and Gool, L. V. (2000). Wide baseline stereo
matching based on local, affinely invariant regions. In
In Proc. BMVC, pages 412–425.
Tuytelaars, T. and Van Gool, L. (2004). Matching widely
separated views based on affine invariant regions. Int.
J. Comput. Vision, 59(1):61–85.
Wu, J., Cui, Z., Sheng, V., Zhao, P., Su, D., and Gong, S.
(2013). A comparative study of sift and its variants.
Measurement Science Review, 13(3):122–131.
Zhang, Z. (2000). A flexible new technique for camera
calibration. IEEE Trans. Pattern Anal. Mach. Intell.,
22(11):1330–1334.
VISAPP 2017 - International Conference on Computer Vision Theory and Applications
522