pal curvatures computation on a local parametrization
using the Darcyan coordinates system. We have also
proposed a solution for the problem of the symmetri-
cal extremities. The obtained results show the perfor-
mance of our proposed method for studying the 3D
human body matching.
In future works, we intend to achieve the optimal res-
olution of the local Darcyan representation by find-
ing the suitable number of the geodesic levels and the
radial lines curves. We propose also to perform the
experimentation on others 3D human databases with
different properties and to test the robustness of the
intrinsic descriptor to the noise.
REFERENCES
Aalo, Y., Dubrovina, A., and Kimmel, R. (2013). Spectral
generalized multi-dimensional scaling. pages 380–
392.
Bronstein, A. and Bronstein, M. (2008). Regularized partial
matching of rigid shapes. In European Conference on
Computer Vision, pages 143–154. Springer.
Bronstein, A. M., Bronstein, M. M., and Kimmel,
R. (2006). Generalized multidimensional scal-
ing: a framework for isometry-invariant partial
surface matching. Proceedings of the National
Academy of Sciences of the United States of America,
103(5):1168–1172.
Bronstein, A. M., Bronstein, M. M., Kimmel, R., Se-
ries, I. M. a. P., Hall, L., and E, C. S. S. (2009).
A Gromov-Hausdorff Framework with Diffusion Ge-
ometry for Topologically-Robust Non-rigid Shape
Matching. pages 612–626.
Cohen, L. and Kimmel, R.(1997). Global Minimum for Ac-
tive Contour Models. International Journal on Com-
puter Vision, 24(1):57–78.
Gadacha, W. and Ghorbel, F. (2013). A stable and accurate
multi-reference representation for surfaces of R3: Ap-
plication to 3D faces description. IEEE International
Conference on Automatic face and Gesture Recogni-
tion (FG2013), Shanghai- China.
Jiang, L., Zhang, X., and Zhang, G. (2013). Partial
shape matching of 3D models based on the Laplace-
Beltrami operator eigenfunction. Journal of Multime-
dia, 8(6):655–661.
Julien, T., Mohamed, D., and Jean-Philippe, V. (2006).
Invariant highlevel reeb graphs of 3d polygonal
meshes. International Symposium on 3D Data Pro-
cessing, Visualization, and Transmission (3DPVT),
page 105?112.
Kim, V. G., Lipman, Y., and Funkhouser, T. (2011).
Blended intrinsic maps. ACM Transactions on Graph-
ics, 30(4):1.
Kimmel, R. and Sethian, J. a. (1998). Computing geodesic
paths on manifolds. Proceedings of the National
Academy of Sciences of the United States of America,
95(15):8431–8435.
Meyer, M., Desbrun, M., Schr¨oder, P., and Barr, A. H.
(2002). Discrete Differential-Geometry Operators for
Triangulated 2-Manifolds. International Workshop on
Visualization and Mathematics.
Ovsjanikov, M., M´erigot, Q., M´emoli, F., and Guibas, L.
(2010). One point isometric matching with the heat
kernel. Eurographics Symposium on Geometry Pro-
cessing, 29(5):1555–1564.
Sun, J., Chen, X., and Funkhouser, T. A. (2010). Fuzzy
geodesics and consistent sparse correspondences for:
eformable shapes. 29(5):1535–1544.
Taylor, J., Shotton, J., Sharp, T., and Fitzgibbon, A. (2012).
The vitruvian manifold: Inferring dense correspon-
dences for one-shot human pose estimation. pages
103–110.
Thompson, D. (1917). On growth and form. University
press in Cambridge, Cambridge, MA.
Van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or, D.
(2010). A Survey on Shape Correspondence. Com-
puter Graphics Forum, xx:1–23.
Wei, L., Huang, Q., Ceylan, D., Vouga, E., and
Li, H. (2015). Dense human body correspon-
dences using convolutional networks. arXiv preprint
arXiv:1511.05904.
Yaron, L. and Thomas, F. (2009). M¨obius voting for surface
correspondence. 28(3):72.
Yusuf Sahillio˘glu, Y. Y. (2014). Multiple shape correspon-
dence by dynamic programming. 33(7):121–130.
Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., Van Kaick,
O., and Tagliasacchi, A. (2008). Deformation-driven
shape correspondence. Eurographics Symposium on
Geometry Processing, 27(5):1431–1439.
Zheng, Y., Tai, C.-L., Zhang, E., and Xu, P. (2013). Pair-
wise harmonics for shape analysis. IEEE transactions
on visualization and computer graphics, 19(7):1172–
1184.