Bederson, B. B., Shneiderman, B., and Wattenberg, M.
(2002). Ordered and quantum treemaps: Making ef-
fective use of 2D space to display hierarchies. ACM
Trans. Graph., 21(4):833–854.
Bertin, J. (1967). S
´
emiologie graphique. Mouton.
Bladh, T., Carr, D. A., and Scholl, J. (2004). Extending
tree-maps to three dimensions: A comparative study.
In Proc. APCHI, pages 50–59.
Blanch, R. and Lecolinet, E. (2007). Browsing zoomable
treemaps: Structure-aware multi-scale navigation
techniques. IEEE Trans. Vis. Comput. Graph.,
13(6):1248–1253.
Bohnet, J. and D
¨
ollner, J. (2011). Monitoring code quality
and development activity by software maps. In Proc.
ACM MTD, pages 9–16.
Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J.
(2000). LOF: Identifying density-based local outliers.
In Proc. ACM SIGMOD, pages 93–104.
Bruls, M., Huizing, K., and van Wijk, J. (1999). Squarified
treemaps. In Proc. Eurographics/IEEE TCVG Sympo-
sium on Visualization, pages 33–42.
Chuah, M. C. (1998). Dynamic aggregation with circular
visual designs. In Proc. IEEE InfoVis, pages 35–43.
Cui, Q., Ward, M., Rundensteiner, E., and Yang, J. (2006).
Measuring data abstraction quality in multiresolution
visualizations. IEEE Trans. Vis. Comput. Graph.,
12(5):709–716.
Ellis, G. and Dix, A. (2007). A taxonomy of clutter reduc-
tion for information visualisation. IEEE Trans. Vis.
Comput. Graph., 13(6):1216–1223.
Elmqvist, N. and Fekete, J.-D. (2010). Hierarchical aggre-
gation for information visualization: Overview, tech-
niques, and design guidelines. IEEE Trans. Vis. Com-
put. Graph., 16(3):439–454.
Fekete, J.-D. and Plaisant, C. (2002). Interactive informa-
tion visualization of a million items. In Proc. IEEE
IV, pages 117–124.
Furnas, G. W. (1986). Generalized fisheye views. In Proc.
ACM CHI, pages 16–23.
Hagh-Shenas, H., Interrante, V., Healey, C., and Kim, S.
(2006). Weaving versus blending: A quantitative as-
sessment of the information carrying capacities of two
alternative methods for conveying multivariate data
with color. In Proc. ACM APGV, pages 164–164.
Hao, M., Dayal, U., Keim, D., and Schreck, T. (2007).
Multi-resolution techniques for visual exploration of
large time-series data. In Proc. EG/VGTC EA, pages
27–34.
Harper, S., Michailidou, E., and Stevens, R. (2009). Toward
a definition of visual complexity as an implicit mea-
sure of cognitive load. ACM Trans. Appl. Percept.,
6(2):10:1–10:18.
Johnson, B. and Shneiderman, B. (1991). Treemaps: A
space-filling approach to the visualization of hierar-
chical information structures. In Proc. IEEE VIS,
pages 284–291.
Johnson, B. S. (1993). Treemaps: Visualizing hierarchical
and categorical data. PhD thesis, University of Mary-
land. HCIL-94-04, UMI-94-25057.
Liu, S., Cao, N., and Lv, H. (2008). Interactive visual anal-
ysis of the nsf funding information. In Proc. IEEE
PacificVis, pages 183–190.
L
¨
u, H. and Fogarty, J. (2008). Cascaded treemaps: Ex-
amining the visibility and stability of structure in
treemaps. In Proceedings of Graphics Interface
2008, GI ’08, pages 259–266, Toronto, Ont., Canada,
Canada. Canadian Information Processing Society.
McCabe, T. J. (1976). A complexity measure. In Proc.
IEEE ICSE, pages 407–.
Misue, K., Eades, P., Lai, W., and Sugiyama, K. (1995).
Layout adjustment and the mental map. Journal of
Visual Languages & Computing, 6(2):183–210.
Mitchell, W., Shook, D., and Shah, S. L. (2004). A picture
worth a thousand control loops: An innovative way
of visualizing controller performance data. In Invited
Plenary Presentation, Control Systems.
Munzner, T., Guimbreti
`
ere, F., Tasiran, S., Zhang, L., and
Zhou, Y. (2003). TreeJuxtaposer: Scalable tree com-
parison using focus+context with guaranteed visibil-
ity. ACM Trans. Graph., 22(3):453–462.
Rosenbaum, R. and Hamann, B. (2009). Progressive pre-
sentation of large hierarchies using treemaps. In Proc.
ISVC, pages 71–80.
Rosenholtz, R., Li, Y., Mansfield, J., and Jin, Z. (2005).
Feature congestion: A measure of display clutter. In
Proc. ACM CHI, pages 761–770.
Schulz, H.-J., Hadlak, S., and Schumann, H. (2011). The
design space of implicit hierarchy visualization: A
survey. IEEE Trans. Vis. Comput. Graph., 17(4):393–
411.
Shneiderman, B. (1992). Tree visualization with treemaps:
A 2D space-filling approach. ACM Trans. Graph.,
11(1):92–99.
Shneiderman, B. (1996). The eyes have it: A task by
data type taxonomy for information visualizations. In
Proc. IEEE Symposium on Visual Languages, pages
336–343.
Tak, S. and Cockburn, A. (2013). Enhanced spatial stability
with hilbert and moore treemaps. IEEE Trans. Vis.
Comput. Graph., 19(1):141–148.
Trapp, M., Glander, T., Buchholz, H., and D
¨
ollner, J.
(2008). 3D generalization lenses for interactive fo-
cus + context visualization of virtual city models. In
Proc. IEEE IV, pages 356–361.
Vliegen, R., van Wijk, J. J., and van der Linden, E.-
J. (2006). Visualizing business data with general-
ized treemaps. IEEE Trans. Vis. Comput. Graph.,
12(5):789–796.
Wattenberg, M. (1999). Visualizing the stock market. In
Proc. ACM CHI EA, pages 188–189.
Wettel, R. and Lanza, M. (2008). CodeCity: 3d visualiza-
tion of large-scale software. In Proc. ACM ICSE Com-
panion, pages 921–922.
Reducing Visual Complexity in Software Maps using Importance-based Aggregation of Nodes
185