ICS 2013 State of the Art Reports. Eurographics As-
sociation.
Bridson, R., Fedkiw, R., and Anderson, J. (2002). Robust
treatment of collisions, contact and friction for cloth
animation. ACM Trans. Graph., 21(3):594–603.
Cotin, S., Delingette, H., and Ayache, N. (1998). Efficient
Linear Elastic Models of Soft Tissues for Real-time
Surgery Simulation. Technical Report RR-3510, IN-
RIA.
Duriez, C., Member, S., Dubois, F., Kheddar, A., and An-
driot, C. (2006). Realistic haptic rendering of interact-
ing deformable objects in virtual environments. IEEE
Transactions on Visualization and Computer Graph-
ics, 12:36–47.
Faure, F. and Wien, T. U. (1998). Interactive solid anima-
tion using linearized displacement constraints. In 9 th
Eurographics Workshop on Computer Animation and
Simulation. e.
Fisher, S. and Lin, M. C. (2001). Deformed distance fields
for simulation of non-penetrating flexible bodies. In
Proceedings of the Eurographic Workshop on Com-
puter Animation and Simulation, pages 99–111, New
York, NY, USA. Springer-Verlag New York, Inc.
Frenkel, D. (2002). Understanding Molecular Simulation -
From Algorithms to Applications. Academic Press.
Hasegawa, S. and Sato, M. (2004). Real-time rigid body
simulation for haptic interactions based on contact
volume of polygonal objects. Comput. Graph. Forum,
23(3):529–538.
Heidelberger, B., Teschner, M., Keiser, R., M¨uller, M., and
Gross, M. (2004). Consistent penetration depth esti-
mation for deformable collision response. In In Pro-
ceedings of Vision, Modeling, Visualization VMV’04,
pages 339–346.
Jakobsen, T. (2001). Advanced character physics. In
IN PROCEEDINGS OF THE GAME DEVELOPERS
CONFERENCE 2001, page 19.
James, D. L. and Pai, D. K. (2002). Real time simulation of
multizone elastokinematic models. In In Proceedings
of the IEEE International Conference on Robotics and
Automation, pages 927–932.
Kot, M. and Nagahashi, H. (2014). Collision response
in mass spring model simulations. Technical re-
port of IEICE. Multimedia and virtual environment,
113(470):287–290.
Kot, M., Nagahashi, H., and Szymczak, P. (2015). Elas-
tic moduli of simple mass spring models. The Visual
Computer, 31(10):1339–1350.
Ladd, A. J. C. (2010). Numerical methods for molecular
and continuum dynamics. 3rd Warsaw School of Sta-
tistical Physics, B. Cichocki, M. Napiorkowski, J. Pi-
asecki, eds., Warsaw Univesity Press, Warsaw.
Ladd, A. J. C. and Kinney, J. H. (1997). Elastic constants
of cellular structures. Physica A: Statistical and The-
oretical Physics, 240(1-2):349–360.
Levine, J. A., Bargteil, A. W., Corsi, C., Tessendorf, J.,
and Geist, R. (2014). A peridynamic perspective on
spring-mass fracture. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Ani-
mation.
Liu, T., Bargteil, A. W., O’Brien, J. F., and Kavan, L.
(2013). Fast simulation of mass-spring systems. ACM
Transactions on Graphics, 32(6):209:1–7. Proceed-
ings of ACM SIGGRAPH Asia 2013, Hong Kong.
Michels, D. L., Sobottka, G. A., and Weber, A. G. (2014).
Exponential integrators for stiff elastodynamic prob-
lems. ACM Trans. Graph., 33(1):7:1–7:20.
M¨uller, M., Heidelberger, B., Teschner, M., and Gross, M.
(2005). Meshless deformations based on shape match-
ing. ACM Trans. Graph., 24:471–478.
Nealen, A., M¨uller, M., Keiser, R., Boxerman, E., Carl-
son, M., and Ageia, N. (2006). Physically based
deformable models in computer graphics. Comput.
Graph. Forum, 25(4):809–836.
Ostoja-Starzewski, M. (2002). Lattice models in microme-
chanics. Applied Mechanics Reviews, 55(1):35–60.
Pabst, S., Thomaszewski, B., and Strasser, W. (2009).
Anisotropic friction for deformable surfaces and
solids. In Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer An-
imation, SCA ’09, pages 149–154, New York, NY,
USA. ACM.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flan-
nery, B. P. (2007). Numerical Recipes 3rd Edition:
The Art of Scientific Computing. Cambridge Univer-
sity Press, New York, NY, USA, 3 edition.
Sin, F., Schroeder, D., and Barbic, J. (2013). Vega: Non-
linear fem deformable object simulator. Comput.
Graph. Forum, 32(1):36–48.
Steinhauser, M. O. (2008). Computational Multiscale Mod-
eling of Fluids and solids. Springer-Verlag Berlin Hei-
delberg.
Tuckerman, M., Berne, B. J., and Martyna, G. J. (1992). Re-
versible multiple time scale molecular dynamics. The
Journal of Chemical Physics, 97(3):1990–2001.