scheduling requirements on the application side in-
stead (periodicity, deadlines. . . ). Then for each
fixed choice of a class of constraints a given ad-
hoc scheduling algorithm is established as optimal
(Rate Monotonic, Earliest Deadline First). Instead,
we choose to provide a constraint language power-
ful as CCSL to express a broad variety of constraints,
and to let a general method (reachability analysis
and model-checking basically) search for a candidate
”best” schedule. This does not avoid the usual NP-
completeness syndroma hidden behind many schedul-
ing approaches, but works relatively well in practice
due to symbolic representation techniques. Schedu-
lability analysis by exhaustive model-checking has
been attempted elsewhere (Amnell et al., 2004; Sun
et al., 2014), but with assumptions quite different
from ours in CCSL.
REFERENCES
Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., and
Yi, W. (2004). Times: A tool for schedulability anal-
ysis and code generation of real-time systems. In For-
mal Modeling and Analysis of Timed Systems, volume
2791 of Lecture Notes in Computer Science, pages
60–72. Springer Berlin Heidelberg.
Andr
´
e, C. (2009). Syntax and Semantics of the Clock Con-
straint Specification Language (CCSL). Research Re-
port RR-6925, INRIA.
Bamakhrama, M. and Stefanov, T. (2011). Hard-real-
time scheduling of data-dependent tasks in embedded
streaming applications. In ACM Int. Conf. on Embed-
ded software, pages 195–204. ACM.
Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N.,
Le Guernic, P., and de Simone, R. (2003). The syn-
chronous languages 12 years later. Proceedings of the
IEEE, 91(1):64–83.
Bilsen, G., Engels, M., Lauwereins, R., and Peperstraete, J.
(1995). Cyclo-static data flow. In Int. Conf. on Acous-
tics, Speech, and Signal Processing, ICASSP’95, vol-
ume 5, pages 3255–3258.
Buck, J. T. (1993). Scheduling Dynamic Dataflow Graphs
with Bounded Memory Using the Token Flow Model.
PhD thesis, University of California, Berkeley, CA
94720.
Commoner, F., Holt, A. W., Even, S., and Pnueli, A. (1971).
Marked directed graph. Journal of Computer and Sys-
tem Sciences, 5:511–523.
de Groote, R., H
¨
olzenspies, P. K. F., Kuper, J., and
Broersma, H. (2013). Back to basics: Homogeneous
representations of multi-rate synchronous dataflow
graphs. In MEMOCODE, pages 35–46. IEEE.
Deantoni, J. and Mallet, F. (2012). TimeSquare: Treat your
Models with Logical Time. In Carlo A. Furia, S. N.,
editor, TOOLS, volume 7304 of LNCS, pages 34–41.
Springer.
Goossens, K. and Hansson, A. (2010). The aethereal
network on chip after ten years: Goals, evolution,
lessons, and future. In Design Automation Conference
(DAC’10), pages 306–311. ACM/IEEE.
Grandpierre, T., Lavarenne, C., and Sorel, Y. (1999). Opti-
mized rapid prototyping for real-time embedded het-
erogeneous multiprocessors. In Int. W. on Hard-
ware/Software Co-Design, CODES’99, Rome, Italy.
Kahn, G. (1974). The semantics of a simple language for
parallel programming. In Inform. Process. 74: Proc.
IFIP Congr. 74, pages 471–475.
Kalray (2014). Mppa manycore. http://www.kalray.eu/
products/mppa-manycore.
Karczmarek, M., Thies, W., and Amarasinghe, S. (2003).
Phased scheduling of stream programs. ACM SIG-
PLAN Notices, 38(7):103–112.
Karp, R. M., Miller, R. E., and Winograd, S. (1967). The
organization of computations for uniform recurrence
equations. J. ACM, 14(3):563–590.
Lamport, L. (1974). The parallel execution of do loops.
Commun. ACM, 17(2):83–93.
Lee, E. A. and Messerschmitt, D. G. (1987a). Static
scheduling of synchronous data flow programs for
digital signal processing. IEEE transactions on com-
puters, C-36(1):24–35.
Lee, E. A. and Messerschmitt, D. G. (1987b). Synchronous
data flow. Proceeding of the IEEE, 75(9):1235–1245.
Mallet, F. and de Simone, R. (2015). Correctness issues on
MARTE/CCSL constraints. Sci. Comput. Program.,
106:78–92.
Melpignano, D., Benini, L., Flamand, E., Jego, B., Lepley,
T., Haugou, G., Clermidy, F., and Dutoit, D. (2012).
Platform 2012, a many-core computing accelerator for
embedded socs: performance evaluation of visual an-
alytics applications. In DAC’12, pages 1137–1142.
Milner, R. (1982). A Calculus of Communicating Systems.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.
Petri, C. A. (1962). Kommunikation mit Automaten. PhD
thesis, Bonn: Institut f
¨
ur Instrumentelle Mathematik,
Schriften des IIM Nr. 2. Technical Report RADC-TR-
65–377, Vol.1, 1966, English translation.
Sriram, S. and Bhattacharyya, S. S. (2012). Embedded mul-
tiprocessors: Scheduling and synchronization. CRC
press.
Stuijk, S. (2007). Predictable Mapping of Streaming Ap-
plications on Multiprocessors. PhD thesis, Faculty
of Electrical Engineering, Eindhoven University of
Technology, The Netherlands.
Stuijk, S., Geilen, M., and Basten, T. (2006). Sdf3: Sdf for
free. In ACSD, volume 6, pages 276–278.
Sun, Y., Soulat, R., Lipari, G., Andr, ., and Fribourg, L.
(2014). Parametric schedulability analysis of fixed
priority real-time distributed systems. In FTSCS, vol-
ume 419 of Communications in Computer and Infor-
mation Science, pages 212–228. Springer.
Yu, H., Talpin, J.-P., Besnard, L., Gautier, T., Marchand, H.,
and Guernic, P. L. (2011). Polychronous controller
synthesis from Marte CCSL timing specifications. In
MEMOCODE, pages 21–30. IEEE.
Explicit Control of Dataflow Graphs with MARTE/CCSL
549