
Towards Including Layout Properties for Modeling Graphical User
Interfaces

Generic Properties for GUI Metamodels

Sarra Roubi1, Mohammed Erramdani1 and Samir Mbarki2
1High School of Technology, Mohamed First University, Oujda, Morocco

2Department of Computer Science, Ibn Tofail University, Kenitra, Morocco

Keywords: Model Driven Engineering, Layout, Transformation, Model, Meta Model, User Interface, Position.

Abstract: Software applications have come to simplify the task for users and offer them automated functionalities.
These applications must therefore contain high-performance and efficient user interfaces in order to
translate correctly the user’s needs. Indeed, several elements contribute to the ergonomics of these
interfaces, among them the position and layout of the graphical components which play a very important
role to ensure this. However, the design and implementation of such user interfaces for different platform
using several programming languages can be tedious and time consuming, especially when the application
gathers a large number of interfaces or screens. Since the model driven engineering aims at automating the
process of development and raising the level of abstraction, we can use model driven principles to help
users choose the right component in the right position on the interface. That is why we present an approach
that combines model driven engineering principles and the graphical user interfaces to handle automated
layout and position.

1 INTRODUCTION

Today, developing high level applications requires
an approach to software architecture that helps
architects evolve their solutions in flexible ways.
Besides, generating application and reuse of code to
focus on functionalities rather that code effort is
required.

These ideas, among others, were considered
central by the Object Management Group (OMG) to
address several challenge raised by new software
technologies.

The OMG, which is a consortium of software
organizations, aims at developing and supporting
specifications to improve the practice of enterprise
software development and deployment. It
encourages efficient use of system models in the
software development process and puts the model at
the heart of the development process. Such
approaches promise improvements in terms of
quality and cost by raising the abstraction level of
the development.

Moreover, it is through the graphical interfaces
that the user can interact with the application and use

the functionalities that are offered. Besides, the
presentation layer should be ergonomic and well
presented. On the other hand, it should face several
challenges, among them, the diversity of the
interaction devices which certainly involves
multiples interaction platforms.

That is why several researches have applied
model-driven techniques to the specification of
software application and precisely interfaces and
user interactions. Among them, the ones focusing on
Web interfaces like OOH-Method (Gmez et al,
2001), WebML (Ceri et al, 2002) and RUX-Model
(Linaje et al, 2007). Furthermore, some approaches
apply model driven techniques for multi-device UI
modeling, such as TERESA (Berti et al, 2004),
MARIA (Paterno et al, 2009), IFML (Brambilla et
al, 2014), (Roubi, Erramdani and Mbarki, 2016).
However, there is no complete approach that handles
layout and constraints for components and user
interface.

In this paper, we propose a model driven
approach taking into account the layout and position
from the input model of the whole process.

The paper is organized as follows section 2
summarizes related works. Section 3 and 4 present

556
Roubi S., Erramdani M. and Mbarki S.
Towards Including Layout Properties for Modeling Graphical User Interfaces - Generic Properties for GUI Metamodels.
DOI: 10.5220/0006272505560560
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 556-560
ISBN: 978-989-758-210-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

respectively the proposed approach with examples
and Section 5 concludes.

2 RELATED WORK

This work is related to several previous works
dealing with conceptual modeling of software
applications, especially the graphical aspect. Some
of these works focused on the web platform: The
Web Modeling Language (WebML) (Ceri, 2002),
defined as a conceptual model for data-intensive
Web. Also, the OO-HDM method by (Schwabe and
Rossi, 1995) presents an UML-based approach for
modeling and implementing Web application
interfaces. Moreover, WebDSL (Groenewegen et al.,
2008) is a domain-specific language consisting of a
core language with constructs to define entities,
pages and business logic.
Some researches apply model based approaches for
multi-device user interface development. Among
them we can cite: TERESA (Transformation
Environment for inteRactivE Systems
representations) (Berti et al, 2003) and MARIA with
(Paterno et al, 2009). Also, UsiXML (USer Interface
eXtended Markup Language) (Vanderdonckt, 2005).
Another related work on applying MDA approach
for Rich Internet Applications is found in (Martinez-
Ruiz et al, 2006). The approach is based on XML
User Interface description languages using XSLT as
the transformation language between the different
levels of abstraction

Other recent proposals in the Web Engineering
field represent the RIA foundations (Urbieta et al,
2007) by extending existing Web engineering
approaches. We also find combination of the UML
based Web Engineering (UWE) method for data and
business logic modeling with the RUX-Method for
the user interface modeling of RIAs was proposed as
model-driven approach to RIA development
(Preciado et al, 2008).

These methods focused on generating the
application code in general and several elements that
handle layout management are not taken into
account. Consequently, these methods do not focus
on generating the application and its interfaces
without taking into account the position and layout
manager. This task is done by hand and can be time
consuming and needs more rework.

In this paper, we propose an idea to develop
which consider completing Meta Models with
generic elements that help generating the layout
manager while transforming the whole model. Those
meta elements should be generic and not related to a

specific platform or technology, so it can be used
with several methods and approaches.

3 PROPOSED MODEL DRIVEN
ENGENEERING

3.1 Proposed Meta Model

In order to automate the process of generating
graphical interfaces for Web and Desktop, we
proposed a Meta Model as a Platform Independent
Model. This Meta Model simplifies the task for
users to design their application in terms of major
functionalities. Each one of these functionalities is
divided into operation and action performed by the
user.

The proposed PIM meta model contains the
following :
 Use Case: describes the main functionality

offered by the system.
 MainOperation: express the concept of the

generic operation performed by the user to
interact with the system. This operation is
divided into several atomic activities.

 Task: represents the atomic task done by the user
to handle a part of the main operation; (select an
element from a list, input information).

 Property: gives further information about the
activity, such as if it is a single or multiple
choice. This property narrows the translation
into graphical component in the PSM meta
model.

 TaskType: enumeration that lists the basic types
that an activity could belong to

Figure 1: Proposed meta elements for modeling the
graphical user interface.

Towards Including Layout Properties for Modeling Graphical User Interfaces - Generic Properties for GUI Metamodels

557

When creating a model as an instance of the
proposed meta-model, the graphical interface is
hierarchized. Indeed, in the first row, we find the use
case with the main functionality of the application.
This functionality is divided into one or more major
operations, each of which has atomic activities that
describe user actions produced by the user towards
graphic components.

In order to complete the meta-model, we have
added elements to include the choice of the user in
terms of positions in the interface. In fact, these
elements will be used in the transformation phase to
choose the most suitable layout.

Figure 2: Position elements for the main operation.

First, we added an enumeration with the five
positions as explained bellow. Each major operation
is placed in the right position.

Second we added the meta element Disposition
that describes the vertical and horizontal location
besides the relative position itself. The idea is to
divide the interface into boxes of a grid and this
activity is localized by a peer (V, H) which allows
associating the position in the most appropriate
layout manager.

3.2 Proposed Process for Component’s
Position

For the proposed approach, we thought of having
two levels of layout in dependence with the two
elements MainOperation and Task of the proposed
metamodel.

First, the MainOperation is positioned relative to
the entire Interface. To do this, we divided the

interface into five regions, Top, Bottom, Centre, Left
and Right. Each major operation will be placed in
one position depending on the user wishes which
will be added to the input model. Later with the
transformation engine, the whole interface will take
a container as a grid with the five positions.

Figure 3: The five region in the graphical Interface.

Second, since each operation contains one or
several tasks, these tasks need to be placed in their
container properly. At this level, the mainOperation
will be the container for the gathered tasks. That’s
why we integrated the pair (V, H) for each atomic
task performed by the user to describe the vertical
and horizontal positions. Again, in the
transformation process, we will take into
consideration these information and choose the
proper layout and place the generated component in
the right position. These elements are integrated in
the input model as described in Fig.4. They are
added as properties to both MainOperation and Task
elements.

We can say that we still are independent from
any platform since we did not use any technical
detail or specific layout manager at this stage. This
helps the user to define one model that can be used
for several platforms and technologies.

These elements are independent from any
specific platform or meta modeling elements. So we
can add them as an extension to the IFML also, since
it is an extensible Meta Model. Indeed, those
properties can complete the extension presented in
(Roubi et al, 2016) with the Field element
extensions.

Moreover, we are working on a more advanced
transformation algorithm to choose properly the
right layout and expand the range of choices and not
be limited to the three types already included.
Indeed, we can add the constraints manager for the
transformation algorithm without adding more

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

558

complex elements to the meta models themselves.
Indeed, we should not have too complex Meta
Models or related to a specific execution platform.

Figure 4: Model Instance of the proposed metamodel with
proposed position properties.

Figure 5: Extension of the IFML by the proposed position
elements.

4 TRANSFORMATION PROCESS

In order to automate the whole process, we
developed a Model To Model transformation engine
that takes into account the elements added for the
position of components. Indeed, we used Query
View Transformation for the Model To Model
Transformation process. We chose the Swing
desktop application and Rich internet Applications.

The code excerpt below describes transformation

from the input abstract elements to their
corresponding ones respecting Rich Internet
Application for both the position and the layout.

mapping
GUIMVP::Disposition::layoutToPosition(
) : JAVAFXMVP::CDispos {
 result.xPos := self.hAlign;
 result.yPos := self.vAlign;

 result.cellPos :=
self.Position.guiPositionToJavaFXPosit
ion();
}

query
GUIMVP::Position::guiPositionToJavaFXP
osition() : JAVAFXMVP::Position {
switch {
case(self=Position::LEFT)
{

return JAVAFXMVP::Position::LEFT;
}
case(self=Position::RIGHT)
{
 return JAVAFXMVP::Position::RIGHT;
}
case(self=Position::CENTER)
{
 return JAVAFXMVP::Position::CENTER;
}
case(self=Position::TOP)
{
 return JAVAFXMVP::Position::TOP;
}
case(self=Position::BOTTOM)
{
 return JAVAFXMVP::Position::BOTTOM;
}};

Afterwards, with the Model To Text
transformation, we consider the generated elements
to choose the corresponding layout and positions for
each component. The result of the generated source
code :

<[theRoot.position.toString().toLowerC
ase()/]>
<[if(theRoot.Type=RootType::GridPane)]
GridPane[/if]>
<TextField id="[item.value/]"
text="[item.value/]"
GridPane.rowIndex="[widget.position.xP
os/]"
GridPane.columnIndex="[widget.position
.yPos/]"/>

Towards Including Layout Properties for Modeling Graphical User Interfaces - Generic Properties for GUI Metamodels

559

5 CONCLUSIONS

In this paper, we presented an approach based on
Model Driven Development to design and generate
graphical user Interface. We focused on the
graphical part of the application by adding new
elements to the proposed Meta Model. These
elements improve the resulting interface by taking
into account the user’s wishes for positions and
Layouts. However, the algorithm behind
transformation is limited to grid layout type. We
should improve it and gather more complex layout
manager and constraints.

The idea is to stay separated from a specific
platform and keep the Meta Models as much simple
as possible by reducing the elements and properties
added.

REFERENCES

Berti, S., Correani, F., Mori, G., Paterno, F., and Santoro,
C., 2004. Teresa: a transformation-based environment
for designing and developing multidevice interfaces.
In CHI Extended Abstracts, pages 793–794.

Brambilla, M. et al., 2014. Extending the Interaction Flow
Modeling Language (IFML) for Model Driven
Development of Mobile Applications Front End To
cite this version : Extending the Interaction Flow
Modeling Language (IFML) for Model Driven
Development of Mobile Applications Front End.

Brambilla, M., Fraternali, P., et al, 2014. The interaction
flow modeling language (ifml), version 1.0. Technical
report, Object Management Group (OMG),
http://www.ifml.org.

Ceri S,., Fraternali, P., Bongio, A., Brambilla, M., Comai,
S., and Matera, M., 2002. Designing Data-Intensive
Web Applications. The Morgan Kaufmann Series in
Data Management Systems. Morgan Kaufmann
Publishers Inc.

Gmez, J., Cachero, C., Pastor, O., 2001. Conceptual
modeling of device-independent web applications.
pages 26–39.

Groenewegen, D., Zef Hemel, Lennart C. L. Kats, and
Eelco Visser, 2008. Webdsl: a domain-specific
language for dynamic web applications. In Gail E.
Harris, editor, OOPSLA Companion, pages 779–780.
ACM.

Linaje, M., Preciado, J.C., and Sanchez-Figueroa, F.,
2007. A Method for Model Based Design of Rich
Internet Application Interactive User Interfaces. In
Proceedings of International Conference on Web
Engineering, July 16-20, 2007, Como, Italy, pages
226–241.

Martinez-Ruiz, F.J., Arteaga, J.M., Vanderdonckt, J., and
Gonzalez-Calleros, J.M., 2006. A first draft of a
model-driven method for designing graphical user

interfaces of Rich Internet Applications. In LA-Web
06: Proceedings of the 4th Latin American Web
Congress, pages 3238. IEEE Computer Societ.

Paterno, F., Santoro, C., and Spano, L.D., 2009. Maria: A
universal, declarative, multiple abstraction-level
language for service-oriented applications in
ubiquitous environments. ACM Trans. Comput.-Hum.
Interact., 16(4).

Roubi, S., Erramdani, M. and Mbarki, S. 2016, Extending
graphical part of the interaction Flow Modeling
Language to generate Rich Internet graphical user
interfaces, MODELSWARD 2016 - Proceedings of the
4th International Conference on Model-Driven
Engineering and Software Development, pp. 161.

Schwabe, D. and Rossi, G., 1995. The object-oriented
hypermedia design model. Communications of the
ACM, 38(8), pp.45–46.

Schwabe, D., Rossi, G., 1995. The object-oriented
hypermedia design model. pages 45–46.

Urbieta, M., Rossi, G., Ginzburg, J., and Schwabe, D.,
2007. Designing the Interface of Rich Internet
Applications. In Proc. LA-WEB’07, pages 144–153.

Vanderdonckt, J., 2005. A MDA-compliant environment
for developing user interfaces of information systems.
In CAiSE, pages 16–31.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

560

