Implications for stroke clinical trials a literature
review and synthesis. Stroke, 38, 1091-1096.
Breiman, L. 1996. Bagging predictors. Machine learning,
24, 123-140.
Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A.
1984. Classification and regression trees, CRC press.
Brott, T., Adams, H., Olinger, C. P., Marler, J. R., Barsan,
W. G., Biller, J., Spilker, J., Holleran, R., Eberle, R. &
Hertzberg, V. 1989. Measurements of acute cerebral
infarction: a clinical examination scale. Stroke, 20,
864-870.
Brown, A. W., Therneau, T. M., Schultz, B. A., Niewczyk,
P. M. & Granger, C. V. 2015. Measure of functional
independence dominates discharge outcome prediction
after inpatient rehabilitation for stroke. Stroke, 46,
1038-1044.
Etemad-Shahidi, A. & Mahjoobi, J. 2009. Comparison
between M5′ model tree and neural networks for
prediction of significant wave height in Lake Superior.
Ocean Engineering, 36, 1175-1181.
Gialanella, B., Santoro, R. & Ferlucci, C. 2013. Predicting
outcome after stroke: the role of basic activities of
daily living predicting outcome after stroke. European
journal of physical and rehabilitation medicine, 49,
629-637.
Hall, M., Frank, E., Holmes, G., Pfahringer, B.,
Reutemann, P. & Witten, I. H. 2009. The WEKA data
mining software: an update. ACM SIGKDD
explorations newsletter, 11, 10-18.
Henninger, N., Lin, E., Baker, S. P., Wakhloo, A. K.,
Takhtani, D. & Moonis, M. 2012. Leukoaraiosis
predicts poor 90-day outcome after acute large
cerebral artery occlusion. Cerebrovascular Diseases,
33, 525-531.
Keith, R., Granger, C., Hamilton, B. & Sherwin, F. 1987.
The functional independence measure. Adv Clin
Rehabil, 1, 6-18.
Kohavi, R. 1995. A study of cross-validation and
bootstrap for accuracy estimation and model selection.
IJCAI.
Marini, C., De Santis, F., Sacco, S., Russo, T., Olivieri, L.,
Totaro, R. & Carolei, A. 2005. Contribution of atrial
fibrillation to incidence and outcome of ischemic
stroke results from a population-based study. Stroke,
36, 1115-1119.
McCullagh, P. 1980. Regression models for ordinal data.
Journal of the royal statistical society. Series B
(Methodological), 109-142.
Moonis, M., Kane, K., Schwiderski, U., Sandage, B. W. &
Fisher, M. 2005. HMG-CoA reductase inhibitors
improve acute ischemic stroke outcome. Stroke, 36,
1298-1300.
Moore, D. S. 2007. The basic practice of statistics, New
York, WH Freeman
Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K.,
Blaha, M. J., Cushman, M., Das, S. R., de Ferranti, S.,
Després, J.-P. & Fullerton, H. J. 2016. Heart Disease
and Stroke Statistics-2016 Update: A Report From the
American Heart Association. Circulation, 133, 447.
Nakayama, H., Jørgensen, H., Raaschou, H. & Olsen, T.
1994. The influence of age on stroke outcome. The
Copenhagen Stroke Study. Stroke, 25, 808-813.
Nogueira, R. G., Liebeskind, D. S., Sung, G., Duckwiler,
G., Smith, W. S. & Multi MERCI Writing Committee
2009. Predictors of good clinical outcomes, mortality,
and successful revascularization in patients with acute
ischemic stroke undergoing thrombectomy pooled
analysis of the Mechanical Embolus Removal in
Cerebral Ischemia (MERCI) and Multi MERCI Trials.
Stroke, 40, 3777-3783.
Quinlan, J. R. 1992. Learning with continuous classes. 5th
Australian joint conference on artificial intelligence.
Singapore.
Quinlan, J. R. 1993. C4. 5 Programs for Machine
Learning, San Francisco, Morgan Kauffmann.
Raffeld, M. R., Debette, S. & Woo, D. 2016. International
Stroke Genetics Consortium Update. Stroke, 47, 1144-
1145.
Rankin, J. 1957. Cerebral vascular accidents in patients
over the age of 60. II. Prognosis. Scottish medical
journal, 2, 200.
Rodgers, J. L. & Nicewander, W. A. 1988. Thirteen ways
to look at the correlation coefficient. The American
Statistician, 42, 59-66.
Tan, P.-N., Steinbach, M. & Kumar, V. 2005. Introduction
to data mining, Boston, Addison-Wesley.
Van Swieten, J., Koudstaal, P., Visser, M., Schouten, H. &
Van Gijn, J. 1988. Interobserver agreement for the
assessment of handicap in stroke patients. Stroke, 19,
604-607.
Wang, Y. & Witten, I. H. 1996. Induction of model trees
for predicting continuous classes. European
Conference on Machine Learning. University of
Economics, Prague.
Willmott, C. J. & Matsuura, K. 2005. Advantages of the
mean absolute error (MAE) over the root mean square
error (RMSE) in assessing average model
performance. Climate research, 30, 79-82.
Yong, M. & Kaste, M. 2008. Dynamic of hyperglycemia
as a predictor of stroke outcome in the ECASS-II trial.
Stroke, 39, 2749-2755.