D. (2013). Overview of replab 2013: Evaluating on-
line reputation monitoring systems. In CLEF 2013.
Amir, S., Almeida, M., Martins, B., Filgueiras, J., and Silva,
M. J. (2014). Tugas: Exploiting unlabelled data for
twitter sentiment analysis. Proceedings of SemEval,
pages 673–677.
Anwar Hridoy, S. A., Ekram, M. T., Islam, M. S., Ahmed,
F., and Rahman, R. M. (2015). Localized twitter opin-
ion mining using sentiment analysis. Decision Analyt-
ics, 2(1):8.
Bellot, P., Moriceau, V., Mothe, J., SanJuan, E., and Tan-
nier, X. (2014). Overview of INEX tweet contextu-
alization 2014 track. In Cappellato, L., Ferro, N.,
Halvey, M., and Kraaij, W., editors, Working Notes
for CLEF 2014 Conference, Sheffield, UK, September
15-18, 2014., volume 1180 of CEUR Workshop Pro-
ceedings, pages 494–500. CEUR-WS.org.
Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C.
(2003). A neural probabilistic language model. jour-
nal of machine learning research, 3(Feb):1137–1155.
Buckley, C. (1995). Automatic query expansion using
SMART : TREC 3. In Proceedings of The third Text
REtrieval Conference (TREC–3). NIST Special Pub-
lication 500-226, pages 69–80. National Institute of
Standards and Technology.
Carpineto, C. and Romano, G. (2012). A survey of auto-
matic query expansion in information retrieval. ACM
Computing Surveys, 44(1):1–50.
Cigarr
´
an, J., Castellanos,
´
A., and Garc
´
ıa-Serrano, A.
(2016). A step forward for topic detection in twitter:
An fca-based approach. Expert Systems with Applica-
tions, 57:21–36.
Cossu, J.-V., Janod, K., Ferreira, E., Gaillard, J., and El-
B
`
eze, M. (2015). Nlp-based classifiers to generalize
experts assessments in e-reputation. In Experimental
IR meets Multilinguality, Multimodality, and Interac-
tion.
Deveaud, R., Mothe, J., and Nia, J.-Y. (2016). Learning to
rank system configurations. In Proceedings of the 25th
ACM International on Conference on Information and
Knowledge Management, pages 2001–2004. ACM.
Ermakova, L. (2015). A method for short message contex-
tualization: Experiments at clef/inex. In International
Conference of the Cross-Language Evaluation Forum
for European Languages, pages 352–363. Springer.
Ermakova, L., Mothe, J., and Nikitina, E. (2016). Proximity
relevance model for query expansion. In Proceedings
of the 31st Annual ACM Symposium on Applied Com-
puting, SAC ’16, pages 1054–1059, New York, NY,
USA. ACM.
Karisani, P., Oroumchian, F., and Rahgozar, M. (2015).
Tweet expansion method for filtering task in twitter.
In International Conference of the Cross-Language
Evaluation Forum for European Languages, pages
55–64. Springer.
Lafferty, J., McCallum, A., and Pereira, F. C. (2001). Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data.
Ling, W., Chu-Cheng, L., Tsvetkov, Y., and Amir, S. (2015).
Not all contexts are created equal: Better word repre-
sentations with variable attention.
Malaga, R. A. (2001). Web-based reputation manage-
ment systems: Problems and suggested solutions.
1(4):403–417.
McDonald, G., Deveaud, R., McCreadie, R., Macdonald,
C., and Ounis, I. (2015). Tweet enrichment for ef-
fective dimensions classification in online reputation
management. In Proceedings of the Ninth Interna-
tional Conference on Web and Social Media, ICWSM
2015, University of Oxford, Oxford, UK, May 26-29,
2015, pages 654–657.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Advances in
Neural Information Processing Systems, pages 3111–
3119.
Miller, C. (2016). Why evan williams of twitter
demoted himself - the new york times, http://
www.nytimes.com/2010/10/31/technology/31ev.html.
Last accessed on 2017-02-18.
Peetz, M.-H., de Rijke, M., and Kaptein, R. (2016). Esti-
mating reputation polarity on microblog posts. Infor-
mation Processing & Management, 52(2):193–216.
Peleja, F., Santos, J., and Magalh
˜
aes, J. (2014). Reputation
analysis with a ranked sentiment-lexicon. In Proceed-
ings of the 37
th
SIGIR conference.
Qureshi, M. A. (2015). Utilising Wikipedia for text mining
applications. PhD thesis.
Rahimi, A., Sahlgren, M., Kerren, A., and Paradis, C.
(2014). Stavicta group report for replab 2014 reputa-
tion dimension task. In CLEF (Working Notes), pages
1519–1527. Citeseer.
Rocchio, J. (1971). Relevance feedback in information re-
trieval. In The SMART Retrieval System, pages 313–
323.
Saleiro, P., Amir, S., Silva, M., and Soares, C. (2015).
Popmine: Tracking political opinion on the web.
In Computer and Information Technology; Ubiqui-
tous Computing and Communications; Dependable,
Autonomic and Secure Computing; Pervasive Intel-
ligence and Computing (CIT/IUCC/DASC/PICOM),
2015 IEEE International Conference on, pages 1521–
1526. IEEE.
S
´
anchez-S
´
anchez, C., Jim
´
enez-Salazar, H., and Luna-
Ram
´
ırez, W. A. (2013). Uamclyr at replab2013: Mon-
itoring task. In CLEF (Working Notes). Citeseer.
Sparck Jones, K. (1972). A statistical interpretation of term
specificity and its application in retrieval. Journal of
documentation, 28(1):11–21.
Spina, D., Gonzalo, J., and Amig
´
o, E. (2014). Learning
similarity functions for topic detection in online repu-
tation monitoring. In Proceedings of the 37th interna-
tional ACM SIGIR conference on Research & develop-
ment in information retrieval, pages 527–536. ACM.
Spina, D., Peetz, M.-H., and de Rijke, M. (2015). Active
learning for entity filtering in microblog streams. In
SIGIR 2015: 38th international ACM SIGIR confer-
ence on Research and development in information re-
trieval.
Torres-Moreno, J.-M., El-B
`
eze, M., Bellot, P., and B
´
echet,
F. (2013). Opinion detection as a topic classification
problem.
Lexical Context for Profiling Reputation of Corporate Entities
575