REFERENCES
Akoglu, L., Tong, H., and Koutra, D. (2015). Graph based
anomaly detection and description: a survey. Data
Mining and Knowledge Discovery, 29(3):626–688.
Bencs
´
ath, B., P
´
ek, G., Butty
´
an, L., and F
´
elegyh
´
azi, M.
(2012). Duqu: Analysis, detection, and lessons
learned. In ACM European Workshop on System Se-
curity (EuroSec), volume 2012.
Beukema, W. J. B. (2016). Enhancing network intrusion de-
tection through host clustering. Master’s thesis, Uni-
versity of Twente.
Bordes, A., Ertekin, S., Weston, J., and Bottou, L. (2005).
Fast kernel classifiers with online and active learning.
Journal of Machine Learning Research, 6(Sep):1579–
1619.
Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A
training algorithm for optimal margin classifiers. In
Proceedings of the fifth annual workshop on Compu-
tational learning theory, pages 144–152. ACM.
Byrne, M. D. (2013). How many times should a stochastic
model be run - An approach based on confidence in-
tervals. In Proceedings of the 12th International con-
ference on cognitive modeling, Ottawa.
Claise, B., Quittek, J., Meyer, J., Bryant, S., and Aitken,
P. (2015). Information Model for IP Flow In-
formation Export. doi:http://dx.doi.org/10.17487/
rfc510210.17487/rfc5102.
Comaniciu, D. and Meer, P. (2002). Mean shift: A robust
approach toward feature space analysis. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
24(5):603–619.
Dell SecureWorks (2013). Advanced persistent threat anal-
ysis. Accessed on 21/01/2016.
Denning, D. E. (1987). An intrusion-detection model. IEEE
Transactions on Software Engineering, 13(2):222–
232.
Ehrlich, W. K., Karasaridis, A., Hoeflin, D. A., and Liu, D.
(2010). Detection of spam hosts and spam bots using
network flow traffic modeling. In LEET.
Eskin, E. (2000). Anomaly detection over noisy data using
learned probability distributions. In In Proceedings
of the International Conference on Machine Learning.
Citeseer.
Eskin, E., Arnold, A., Prerau, M., Portnoy, L., and Stolfo,
S. (2002). A geometric framework for unsupervised
anomaly detection. In Applications of data mining in
computer security, pages 77–101. Springer.
Eskin, E., Lee, W., and Stolfo, S. J. (2001). Modeling sys-
tem calls for intrusion detection with dynamic win-
dow sizes. In DARPA Information Survivability Con-
ference & Exposition II, 2001. DISCEX’01. Pro-
ceedings, volume 1, pages 165–175. IEEE.
Fortunato, S. (2010). Community detection in graphs.
Physics Reports, 486(3):75–174.
Harris, D. and Harris, S. (2012). Digital design and com-
puter architecture. Elsevier.
Holland, P. W., Laskey, K. B., and Leinhardt, S. (1983).
Stochastic blockmodels: First steps. Social Networks,
5(2):109 – 137.
Hutchins, E. M., Cloppert, M. J., and Amin, R. M.
(2011). Intelligence-driven computer network defense
informed by analysis of adversary campaigns and in-
trusion kill chains. Leading Issues in Information
Warfare & Security Research, 1:80.
Jain, A. K. (2010). Data clustering: 50 years beyond K-
means. Pattern Recognition Letters, 31(8):651–666.
Jain, A. K., Topchy, A., Law, M. H. C., and Buhmann,
J. M. (2004). Landscape of Clustering Algorithms.
In Proceedings of the Pattern Recognition, 17th Inter-
national Conference on (ICPR’04) Volume 1 - Volume
01, ICPR ’04, pages 260–263, Washington, DC, USA.
IEEE Computer Society.
Kaspersky (2015). Carbanak APT: The Great Bank Rob-
bery. Accessed on 18/2/2016.
Langner, R. (2011). Stuxnet: Dissecting a cyberwarfare
weapon. IEEE Security and Privacy, 9(3):49–51.
Lazarevic, A., Kumar, V., and Srivastava, J. (2005). In-
trusion detection: A survey. In Kumar, V., Srivas-
tava, J., and Lazarevic, A., editors, Managing Cyber
Threats: Issues, Approaches, and Challenges, pages
19–78. Springer US, Boston, MA.
Li, Y., Wang, J.-L., Tian, Z.-H., Lu, T.-B., and Young,
C. (2009). Building lightweight intrusion detection
system using wrapper-based feature selection mecha-
nisms. Computers & Security, 28(6):466 – 475.
MacQueen, J. (1967). Some methods for classification and
analysis of multivariate observations. In Proceed-
ings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1(14), pages 281–
297. Oakland, CA, USA.
Research and Markets (2015). Advanced persistent threat
protection market - global forecast to 2020.
Roy, D. B. and Chaki, R. (2014). State of the art analy-
sis of network traffic anomaly detection. In Applica-
tions and Innovations in Mobile Computing (AIMoC),
2014, pages 186–192. IEEE.
Sabahi, F. and Movaghar, A. (2008). Intrusion Detection:
A Survey. In Systems and Networks Communications,
2008. ICSNC ’08. 3rd International Conference on,
pages 23–26.
Scarfone, K. A. and Mell, P. M. (2007). SP 800-94. Guide to
Intrusion Detection and Prevention Systems (IDPS).
Technical report, National Institute of Standards &
Technology, Gaithersburg, MD, United States.
Sch
¨
olkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J.,
and Williamson, R. C. (2001). Estimating the support
of a high-dimensional distribution. Neural computa-
tion, 13(7):1443–1471.
Shiravi, A., Shiravi, H., Tavallaee, M., and Ghorbani, A. A.
(2012). Toward developing a systematic approach to
generate benchmark datasets for intrusion detection.
Computers & Security, 31(3):357 – 374.
Virvilis, N. and Gritzalis, D. (2013). The Big Four - What
We Did Wrong in Advanced Persistent Threat Detec-
tion? In Availability, Reliability and Security (ARES),
2013 Eighth International Conference on, pages 248–
254.
Wei, S., Mirkovic, J., and Kissel, E. (2006). Profiling and
clustering internet hosts. DMIN, 6:269–75.
ForSE 2017 - 1st International Workshop on FORmal methods for Security Engineering
702